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Abstract 

Fourier transform techniques are playing an increasingly important role in 

Mathematical Finance. For arbitrary stochastic price processes for which the 

characteristic functions are tractable either analytically or numerically, prices for a 
wide range of derivatives contracts are readily available by means of Fourier inversion 

methods. In this paper we $rst review the convenient mathematical properties of 

Fourier transforms and characteristic functions, survey the most popular pricing 
algorithms and finally compare numerical quadratures for the evaluation of density 

functions and option prices. At the end, we discuss practical implementation details 

and possible re$nements with respect to computational e%ciency. 
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1 Introduction 

The $rst important contribution to quantitative modeling of derivatives securities 
dates back to Black and Scholes (1973) who deduce a precise formula for the value of 
a European option on an underlying whose price on maturity follows a log-normal 
di7usion process. Despite the success of the Black–Scholes model on pricing and 
hedging derivatives, Merton (1976) noted early that options quoted on the markets 
di7er systematically from their predicted values, which led up to questioning the 
distributional assumptions based on geometric Brownian motion. 

By adding jumps to the archetypal price process with Gaussian innovations 
Merton (1976) is able to partly explain the observed deviations from the benchmark 
model which are characterized by fat tails and excess kurtosis in the returns 
distribution [for an overview of ‘stylized facts’ on asset returns see Cont (2001), 
statistical properties of implied volatilities are summarized in Cont & al. (2002)]. In 
the sequel also other authors develop more realistic models based on jump processes 
[e. g. Eberlein and Keller (1995), Madan & al. (1998) and Kou (2002)]. They derive 
option values from an analytical form of the conditional density function, for the 
value of the underlying on maturity given the initial state. Many of these original 
results are quite complicated requiring special functions or in$nite summations. 

As an alternative to model the option payo7 directly by an analytical stochastic 
process, it has been recognized that by mapping the characteristic function of the 
density function to the payo7 in Fourier space, option values can be usually 
computed much easier for these sophisticated processes. The characteristic function 
developed as a tool for the solution of problems in Probability Theory is the Fourier 
transform of the density function and the main idea using the transform methods is 
then to take an integral of the payo7 function over the probability distribution 
obtained by inverting the corresponding Fourier transform. There is growing interest 
in applying these methods using characteristic functions and Fourier transforms 
which stems from the need to apply more complex pricing models than the Gaussian, 
which are more conveniently characterized through a characteristic function 
primarily rather than a probability distribution. 

Transform methods turn out to be a very e7ective tool for the solution of many 
technical problems, since calculations in Image space are often much easier than in 
the spatial domain. The solution to the problem in Image space is then described 
through an Image function. Examples for these Image functions are calculations in 
Laplace or Fourier Space which are widely used in $nancial applications. To $nally 
obtain the solution in original Space domain the Image function has to be inverted 
via inversion methods. 

The Fourier transform is a widely used and a well understood mathematical tool 
from Physics and Engineering disciplines applicable to numerous tasks, for example 
signal processing [Allen and Mills (2004)], or as a method for solving partial 
di7erential equations [Du7y (2004)]. It is interesting to note that already Merton 
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(1973) noticed the possibility of using Fourier transforms to solve the Black–Scholes 
partial di7erential equation. 

Inside the $eld of Finance the Fourier inversion method was $rst proposed in the 
Stein and Stein (1991) stochastic volatility model that uses the transform method in 
order to $nd the distribution of the underlying. Settling on the characteristic function 
approach, Heston (1993) obtains an analytical pricing formula for the valuation of 
European options with time varying volatility of the underlying. By using a variant of 
Lévy’s Inversion Theorem for the probability functions the options prices result as the 
di7erences from the numerical evaluation of two Fourier integrals. 

Since then Fourier inversion methods became a very active $eld of research in 
$nance theory. Bakshi and Madan (2000) provide an economic foundation for 
characteristic functions, generalize the approach of Heston (1993) and Stein and Stein 
(1991) in many signi$cant ways, and develop valuation formulae for a wide variety of 
contingent claims. Du%e & al. (2000) o7er a comprehensive survey that the Fourier 
methods are applicable to a wide range of stochastic processes, the class of 
exponential a%ne jump di7usions. 

A numerically very e%cient methodology is introduced in Carr and Madan 
(1999) who pioneer the use of fast Fourier transform algorithms by mapping the 
Fourier transform directly to call option prices via the characteristic function of an 
arbitrary price process. Lee (2004) generalizes their approach to other payo7 
functions and uni$es it with other known Fourier pricing elements. In Carr and Wu 
(2004) the authors extend the Carr and Madan (1999) methodology for general 
claims and apply these to time changed Lévy processes, the class of generalized affine 
models [Filipović (2001)] and Quadratic activity rate models [Leippold and Wu 
(2002)]. 

Given the characteristic function for some price dynamics and a Fourier 
transformed payo7 function determining the contract type, Lewis (2001) develops a 
highly modular pricing framework. In the Carr and Madan (1999) approach the 
whole option price is Fourier transformed including the particular payo7 function, 
whereas Lewis (2001) entirely separates the underlying stochastic process from the 
derivative payo7 by the aid of the Plancherel–Parseval Theorem and obtains a variety 
of valuation formulae by the application of Residual Calculus. 

More techniques have been developed to compute option values as an integral in 
Fourier space, using Fourier transform methods. Throughout the paper we will 
mention some of them and give more details. Density calculations and option pricing 
are then, as we will see, a matter of numerical integration for the Fourier inversion, 
usually employing direct integration methods or the Discrete Fourier Transform, 
where the Fast Fourier Transform is an e%cient way to compute it in practice. 
Methodological aspects concerning numerical implementation should be considered 
sensibly since the semi-in$nite domain Fourier integrals might exhibit oscillations in 
the integrand, which is complicating numerical analysis. 
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Computational performance also becomes a critical factor when calibrating the 
models to observed market prices which can afterwards be used to value exotic 
products or devise hedging strategies. The complexity of these new models require 
sophisticated numerical algorithms which ensure fast and reliable option pricing, 
calculations of hedge parameters, volatility surface calculations and density 
approximations. 
 
The structure of the paper is organized as described in the following. In the next 
section, we brieKy outline the general valuation framework for European option 
pricing. We start by considering the standard martingale pricing approach and then 
point to the inherent connections to Arrow–Debreu securities and state price 
densities. In Section 3, we give an overview of the most fundamental ideas and 
mathematical tools needed for characteristic function methods, we also present the 
most relevant properties of Fourier Transforms and their inversion. Section 4 
provides an exhibition of the most popular Fourier pricing algorithms. We begin with 
the Black–Scholes style valuation formula and proceed with the more Kexible single 
integral solutions. With a focus on an intuitive understanding, we emphasize on a 
concise presentation of the main results of the various methodologies without too 
much technical details. Thereafter, we accentuate some of the similarities between 
these approaches and point out recent developments which are based on these 
procedures or which apply them to other $elds in mathematical $nance. In Section 5, 
we finally show how to apply Fourier inversion methods to density approximations 
and option pricing. To do so we $rst present and discuss some qualitative features of 
popular numerical quadratures and fast Fourier transform methods. Then, we give 
detailed numerical examples, show convergence properties of the Fourier integrands, 
compare accuracy and run times. At the end, in Section 6, we review various 
mathematical and numerical methods regarding implementational issues and 
computational performance. A thorough quantitative and numerical analysis is a 
important factor and relevant for the stability of the Fourier transform methods, the 
choice of adequate truncation levels for the numerical evaluation and integration 
sample spacing of the Fourier integrands. Section 7 concludes. 
 

2 Valuation Problem for European Options 

Asset prices are modeled by stochastic processes whose evolutions are governed by an 
underlying probability measure. In the well established theory of arbitrage pricing, 
there exists a risk neutral probability measure under which asset prices are arbitrage 
free. Moreover, in terms of probability, the absence of arbitrage is essentially 
equivalent to the existence of a risk neutral equivalent martingale measure for the 
stochastic process making the underlying process become a martingale. 

Consequently, as Ross (1976) and Cox and Ross (1976) have shown, the price of a 
European option can be reduced to taking their discounted expected values of a 
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future payo7 with respect to a risk neutral measure �. This is known as martingale 
pricing or pricing by expectation 

 ���� , �, �	 
 ��
����	�������	|���. (2.1) 

For a European call option with strike �, risk-free rate � and time to maturity �, the 
value of the arbitrage free option with payo7 ����	 
 max�� � �, 0� 
 ��� � �	� 
is then given by 

 ���� , �, �	 
 ��
����	������ � �	�|���, (2.2) 

 
 ��
����	  ��� � �	�!���|��	d�� ,#
$   

 
 ��
����	  ��� � �	!���|��	d��#
% .  

The expectation is calculated on the basis of the risk neutral density function !���|��	. It is the conditional transition probability density of the underlying � at 
time � conditional upon the information Kow ��  ($ltration) of the asset price 
available up to time & [Harrison and Pliska (1981)]. From Harrison and Kreps (1979) 
we know that under technical conditions the existence of an equivalent martingale 
measure and the absence of arbitrage are essentially equivalent properties. This 

equivalent martingale measure makes the discounted price process �'� 
 ��
���  a 

martingale and satis$es the martingale property �'$ 
 ��(�'�). 
Under the risk neutral pricing measure, all assets have the same expected rate of 

return which is the risk free rate. In other words, under no-arbitrage conditions the 
risk preferences of investors do not enter into valuation decisions, thus, we can 
assume risk neutrality and price any security in a preference free world. For recent 
treatments and more details on the approach to arbitrage pricing see e. g. Delbaen and 
Schachermayer (2006) and the references therein. 

Commonly, the risk neutral probability measure is used for arbitrage pricing. A 
market place free from arbitrage opportunities is usually characterized by a unique set 
of state contingent claims. Arrow–Debreu prices, or similarly Arrow–Debreu 
securities, are the most elementary contingent claims. An Arrow–Debreu security 
pays o7 one unit of the numéraire at time �, if, and only if, a speci$c state occurs. For 
this reason Arrow–Debreu prices are also known as state prices. The continuous state 
equivalent of Arrow–Debreu securities constitutes a state price density. 

Any possible payo7 can be replicated with a linear combination of state prices 
whereas this particular replication portfolio implies a unique arbitrage free price. 
These elementary relations are illustrated in Figure 1. 
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Figure 1: Arrow–Debreu securities. Left: Payo7 diagram of a state price. Right: Payo7 diagram for a 
European call option. 

This observation suggests that risk neutral probabilities can be expressed in terms of 
state prices and vice versa. Following Breeden and Litzenberger (1978), the state price 
density is related to the risk neutral density by ��
�!���	 and can be derived by twice 
di7erentiating either a call or put option with respect to its strike price 

 !���	 
 �
� *+,�+�,-%./0 . (2.3) 

This result shows that it is possible to construct an Arrow–Debreu security which 
pays o7 one unit at time � exactly if � 
 �� . Suppose � is the $nal payo7 to a 
derivative security maturing at � 

 ����	 
  ���	1��� � �	d�#
�# . (2.4) 

Following Carr (2003) this is a spectral decomposition of the payo7 � into the 
payo7s or delta claims 1��� � �	 respectively from an in$nite collection of Arrow–
Debreu securities 

 +,+�, ��� � �	� 
 1��� � �	. (2.5) 

The risk neutral probability function and the state price density are completely 
interchangeable concepts, only distinguished by a discount factor. 

Under the martingale pricing approach, an option value can be represented as a 
convolution of a payo7 function with a discounted probability density function or 
equivalently the state price density of the state variables. It is well known that if the 
density of the underlying is known in closed form, option prices can be obtained by a 
single integration of their payo7 against this density function. 

For example if we assume Brownian motion for the price dynamic, the density 
function is known in closed form. The stock price on maturity then reveal a random 
variable having a log-normal distribution. Under � its density is given by 

 !���	 
 1��3√26� ��789 /0�:89 /;�:
�<,=>?�?@>
,=>� , (2.6) 
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i. e. the density of a Normal Distribution with mean ln �$ C :� � <, 3,? � and 

variance 3,�. By a single integration the value for the Black–Scholes call of today is 
obtained 

 ���$, �, �	 
 ��
�  ��� � �	 1��3√26� ��789 /0�:89 /;�:
�<,=>?�?@>
,=>� d�� .#

%  (2.7) 

Unfortunately, more sophisticated price dynamics like a%ne jump di7usions and 
Lévy processes often do not possess density functions in closed form or have quite 
complicated analytical expressions involving special functions and in$nite 
summations. However, for many of the more advanced asset price models 
characteristic functions are available in closed form. By analogy, if the characteristic 
function of the underlying is tractable, option prices can also be obtained by a single 
integration. 
 

3 Fourier Transform, Inversion Theorem and Characteristic 

Functions 

The power and versatility of Fourier Analysis and the Calculus of Characteristic 
Functions have been used in many recent publications relating to probability 
distributions. Generally this is gaining strong momentum in the $eld of $nancial 
modeling, too. The successful application of these techniques require a considerable 
degree of mathematical sophistication. The purpose of this section is to give an 
overview of this theory, and to show how to apply characteristic functions and 
Fourier transforms in mathematical $nance. 
 

3.1 Characteristic Functions 

If not in all statistical analyses, at least in most of them, the calculation of the 
distribution function of random variables is required. A very interesting fact is that 
even if the random variable of interest does not have an analytical expression, the 
characteristic function of this random variable always exists. There is a one to one 
relationship between the probability density and a characteristic function. If the 
characteristic function is known in closed form, is tractable numerically, or given by 
empirical data, then we can compute the distribution function by using the Inversion 
theorem. 

The characteristic function DE�F	 
 �(�GHE) of a real valued random variable I 
is de$ned for arbitrary real numbers F as the expectation of the complex valued 

transformation �GHE, where i 
 √�1 is the imaginary unit. If KE�L	 is the probability 
function (PDF) of the random variable then the integral 
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 DE�F	 
 �(�GHE) 
  �GHM#
�# KE �L	dL, (3.1) 

de$nes the expected value and is by de$nition the Fourier transform of the density 
function KE�L	 denoted by O�KE�L	�. At a given F, DE�F	 is a single random variable 
and for �∞ Q F Q ∞ we have a stochastic process. An intuitive understanding of 
characteristic functions is o7ered by Epps (1993) who give clear geometric 
interpretations of the characteristic functions to elucidate their properties and use in 
statistical applications. From Euler’s Identity the random variable I can be 
represented by sine and cosine function as 

 �GHE 
 cos�FI	 C i sin�FI	. (3.2) 

From this operation we can see that exponential �GHE for a given F represents a point 
on the unit circle in the complex plane. The unit circle is a circle with unit radius. It 
can be considered as a contour in the complex plane de$ned by |U| 
 1, where |U| is 
the complex modulus which can be interpreted as a distance measure.  
 

 
Figure 2: Geometrical interpretations of characteristic functions. Left: Operation of a characteristic 
function. Right: Wrapped around distribution of FI, I~Φ�0, 1	 at F 
 0, 0.5, 1 and characteristic 
function of Φ�0, 1	 on �0, 1�. Source: Epps (1993), p 34. 

Since DE�F	 
 �(�GHE), the characteristic function evaluated at any F can be 
interpreted as the center of mass of the distribution of FI wrapped around the unit 
circle in the complex plane. If the domain of DE�F	 is given by the whole real line, we 
have the geometrical representation of the characteristic function as a curve con$ned 
to an in$nitely long circular ‘cylinder’ or ‘tube’ which is illustrated in Figure 2. Further 
we can see that the norm of the characteristic function |DE�F	| is always within the 
unit circle. At F 
 0 we have the value one since in this case FI is degenerated. 

Comparing the wrapped around distribution of FI and �FI for F Y 0, it 
becomes apparent that one is the mirror image of the other about the real axis. The 

���GHE� 
u=1.0 

u=0.5 

u=0.0 
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real parts of their centers are equal and the imaginary parts are equal, too, but of 

opposite sign, hence DE�F	ZZZZZZZZ 
 DE��F	 is the complex conjugate of DE�F	. Due to 
this symmetry around F 
 0, it is su%cient to concentrate on F [ 0 to fully describe 
the distribution function. 

If a characteristic function is absolutely integrable over the real line ��∞, C∞	 
then I has an absolutely continuous probability distribution. This is said to be 
integrable in the Lebesgue sense and belongs to \<�]	. 
 
Below follows a summary of elementary properties of characteristic functions 

1. DE�F	 always exists since |�iFI| is a continuous and bounded function for all $nite 

real F and L; further ^_ K�L	∞�∞ dL^ ` _ |K�L	|∞�∞ dL so that the de$ning integral 

converges absolutely 

2. DE�0	 
 1 for any distribution 

3. ^DI�F	^ ` 1 

4. DE�F	ZZZZZZZZ 
 DE��F	 

5. If a 
 b C cI, then Dd�F	 
 �iHeDE�cF	 

6. If I< and I, are stochastically independent, then the characteristic function Dd�F	 of 

the new random variable a 
 I< C I, is the product of the characteristic function of 

each random variable DEf�F	DE>�F	, which are allowed to be drawn from di7erent 

distributions 

Another important property of characteristic functions is the possibility to derive the 
moments and cumulants of a distribution function. By gth di7erentiation of the 

characteristic function at the origin of F, the gth moment ��Ih� of the distribution 
(if they exist) is obtained 

 ��Ih� 
 1ih *dhDE�F	dFh -H.$. (3.3) 

In the same way that the characteristic function generates the moments, cumulants ih�I	 are computed by taking the logarithm of DE�F	 which is then called the 
cumulant characteristic function lnDE�F	 

 ih�I	 
 1ih *dh lnDE�F	dFh -H.$. (3.4) 

Thus, important qualitative statistical properties such as variance, skewness and 
kurtosis have analogons in Image space and are readily available if the characteristic 
function is known 

 ��I� 
 i<�I	, (3.5) 

 jkl�I	 
 i,�I	, (3.6) 
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 m�I	 
 in�I	i,�I	n/ ,, (3.7) 

 g�I	 
 ip�I	i,�I	,. (3.8) 

These fundamental properties make characteristic functions a viable tool in 
Probability Theory and to applications in stochastic inference. 
 

3.2 The Inversion Theorem 

An essential property of characteristic functions is their one to one relationship with 
distribution functions. Every random variable possesses a unique characteristic 
function and the characteristic function indeed characterizes the distribution 
uniquely [Waller (1995)]. The Inversion Theorem is the Fundamental Theorem of the 
Theory of Characteristic Functions since it links the characteristic function back to its 
probability distribution via an inverse Fourier transform. 

Based on the fundamental results from Lévy (1925) who gave a general inversion 
formula, Gurland (1948) and Gil-Pelaez (1951) develop useful representations of the 
Inversion Theorem. In the following we will follow the form given by Gil-Pelaez 
(1951) [see Waller & al. (1995) for a review on inversion methods]. 

The inversion algorithms are based on the following particular form of the Gil-

Pelaez inversion integral for cumulative distribution function (CDF) _ KE�L	M�# qL 

 rE�L	 
 s�I ` L	 
 12 � 126  ��GHMDE�F	iF dF#
�# . (3.9) 

We see that the recovered distribution function is expressed as an integral in terms of 
the characteristic function. Taking the derivate of rE�L	 yields the probability density 
function KE�L	 

 KE �L	 
 O�<�DE�F	� 
 126  ��GHMDE�F	dF#
�# . (3.10) 

The comparison of (3.1) with (3.10) exhibits the reciprocal relationship which exists 
between KE�L	 and DE�F	. 

The Fourier transform of a real valued function can be written as a two 
dimensional vector in the complex plane. These complex values are expressed as U 
 b C ic, where t�U� 
 b is the real part and u�U� 
 c is the imaginary part of the 
complex number U with b and c being real numbers. The complex conjugate is given 

by Uv 
 b � ic, the modulus is |U| 
 √b, C c, and the real part is t�U� 
 �U C Uv	/ 2 

and imaginary part u�U� 
 �U � Uv	/ 2i. Further we have 

 t�DE�F	� 
 DE�F	 C DE��F	2 , (3.11) 
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 u�DE�F	� 
 DE�F	 � DE��F	2i , (3.12) 

which implies that the function DE�F	 is even in its real part and odd in its imaginary 
part for all F. An even function is said to be symmetric with respect to F 
 0. 
Therefore, the integral of the positive and the negative halves of an even function are 
the same. 

This special symmetry property allows us to further simplify the Fourier 
integrals. Using these results the expression for KE�L	 reduces to 

 KE�L	 
 126 t w ��GHMDE�F	dF$
�# x C 126 t w ��GHMDE�F	dF#

$ x,  

 
 126 t w ��yHMDE�F	dFZZZZZZZZZZZZZZZZZZ#
$ x C 126 t w ��GHMDE�F	dF#

$ x,  

 
 126 t w2  ��GHMDE�F	dF#
$ x,  

 

 

 16  t(��GHMDE�F	)dF.#

$  (3.13) 

Similar calculations for the CDF yield 

 rE�L	 
 12 C 126  �GHMDE��F	 � ��GHMDE�F	iF dF,#
$  (3.14) 

 
 12 C 126  ���yHMDE�F	ZZZZZZZZZZZZZZZZZ � ��GHMDE�F	iF dF#
$ ,  

 
 12 � 16  t w��GHMDE�F	iF x dF#
$ , (3.15) 

 
 12 � 16  u w��GHMDE�F	F x dF#
$ . (3.16) 

For the probability s�I [ L	 
 _ KE�L	#M qL we can use the simple relation rEz�L	 
 s�I [ L	 
 1 � rE�L	 to obtain the complementary CDF (cCDF) 

 rEz�L	 
 12 C 16  t w��GHMDE�F	iF x dF,#
$  (3.17) 

 
 12 C 16  u w��{HMDE�F	F x dF#
$ . (3.18) 

In certain cases it will be convenient to employ Euler’s identity and express the 
complex exponential as two separate cosine and sine functions. For (3.1) we have the 
equivalent representation 
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 DE�F	 
  cos�FL	 KE�L	dL#
�# C i  sin�FL	 KE�L	dL.#

�#  (3.19) 

Using this transformation the density function in (3.10) results in a real valued 
integral of a real variable [see Abate and Whitt (1992)] 

 KE�L	 
 16  �cos�FL	 t�DE�F	� C sin�FL	 u�DE�F	�	dF#
$ . (3.20) 

And $nally, for the CDF we get 

 rE�L	 
 12 � 16  �cos�FL	 u�DE�F	� � sin�FL	 t�DE�F	�	 dFF#
$ . (3.21) 

 

3.3 Elementary Properties of the Fourier Transform 

Next, we mention some more relevant properties of Fourier transforms. We denote 

the Fourier transform from K�L	 as K|�F	 
 O�K��F	 or just O�K�. 
 
Linearity For arbitrary b, c the transform is a linear operator 

 O�bK�L	 C c}�L	��F	 
 bK|�F	 C c}~�F	. (3.22) 

Translation The Fourier transform turns a multiplication by a variable L$ into 
translation 

 O�K�L � L$	��F	 
 �GHM;K|�F	. (3.23) 

Di'erentiation If � [ 0 is an integer, K��	 is piecewise continuously di7erentiable, 
and each derivative is absolutely integrable on the entire real line, then 

 O(K��	)�F	 
 ��iF	�K|�F	. (3.24) 

Thus, a di7erentiation converts to multiplication in Fourier space. 
 
Convolution Theorem One of the most fundamental and important properties of 
Fourier transforms is convolution (Faltung). In Fourier space a convolution is 
mapped into multiplication. De$ne the convolution by 

 �K � }	�L	 
  K�L � �	}��	d�#
�# , (3.25) 

where � denotes the convolution operator. Then we have 

 O�K � }��F	 
 K|�F	}~�F	, (3.26) 

and 

 O�K}��F	 
 K|�F	 � }~�F	. (3.27) 
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Thus, the Fourier transform of the convolution of two functions equals the product of 
the Fourier transforms of each of the functions. 
 
Absolutely and Square Integrable Functions Many concepts in the $eld of Fourier 
Transform Theory draw heavily on the notion of absolute integrability. A function is 
absolutely integrable (or simply integrable) if the integral of its absolute value over ] 
is $nite 

  |K�L	|#
�# dL Q ∞. (3.28) 

This is a very important relation since for a Fourier transform and its inverse to exist, 
then the condition in equation (3.28) must hold. The space of absolutely integrable 
functions is called \< or \<�]	. Functions that are integrable on an interval �b, c	 are 
said to be on \<�b, c	. 

If K�L	 is absolutely integrable, which is true for K�L	 � \<�]	, then the Fourier 
transform exists. Given O�K��F	 is absolutely integrable, the inverse Fourier 

transform O�<(O�K�)�F	 exists. However, it is important to note that the Fourier 
transform of an \<�]	 function is not necessarily integrable even though it often is. 
This is why we cannot simply assume to take its inverse transform. 

Fourier transforms are extendable to square integrable functions as well. A 
function is square integrable if 

  |K�L	|,#
�# dL Q ∞. (3.29) 

The space of square integrable functions is denoted by \, or \,�]	. The space \, 
delineates an inner product space. Functions \<�b, c	 that are integrable on an 
interval �b, c	 also satisfy 

  |K�L	|,�
e dL Q ∞. (3.30) 

The last inequality is of great importance since it implies that a function well de$ned 
on an interval �b, c	 is de$ned on the inner product space as well, i. e. a vector space 
equipped with an inner product relation ��,��. The notion of inner products is 
introduced in the next part about the Plancherel–Parseval Theorem. 
 
The Plancherel Theorem and Parseval’s Theorem Another very important property 
is that under certain conditions inner or scalar products are preserved under Fourier 
transforms. In the context of Probability Theory, these results are especially 
signi$cant for the reconstruction of a distribution from its characteristic function. 
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The scalar product or inner product of two functions K�L	 and }�L	 on \, is 
de$ned as 

 �K, }� 
  K�L	}�L	ZZZZZZdL.#
�#  (3.31) 

And equally for the Fourier transforms O�K� and O�}� 
 �O�K�, O�}�� 
  O�K�O�}�ZZZZZZdL#

�# . (3.32) 

Since K�L	 
 <,� _ ��GHMO�K�qF#�# , then we have 

  K�L	}�L	ZZZZZZqL#
�# 
  126#

�#  ��GHMO�K�}�F	dFdL,#
�#   

 
 126  O�K�#
�#  ��GHM}�F	dLdF#

�# ,  

 
 126  O�K�O�}�ZZZZZZdF#
�# . (3.33) 

There are subtle aspects involved in the interchange of integration carried out in the 
preceding equations. By applying Fubini’s Theorem, which states in principle that if a 
function of two variables is absolutely integrable over a region, then its iterated 
integrals and its double integral over the region are all equal. Hence, we may freely 
interchange the order of integration. 

If K 
 } than the integral of the squared modulus of K is equal to the integral of 
the squared modulus of its Fourier transform O�K� 

  |K|,dL#
�# 
  |O�K�|,dF#

�# . (3.34) 

Via a Fourier inversion the scalar or inner product can be transformed from Fourier 
domain to spatial domain and vice versa. This identity is sometimes also referred to as 
the Parseval’s Identity, who discovered a discrete version in the context of Fourier 
series. The inner product on \,�]	, restricted to those functions that are also 

absolutely integrable, furnishes a inner product operation ��,�� for \< �  \,, where the 

inner product induces a norm �L� 
 ��L, L� on this space. One of the main 
consequences of the Plancherel Theorem or Parseval’s Idendity for later purposes is 
that Fourier transforms preserve the norms of functions. 

There seems to be no unique naming convention about the theorem, i. e. in 
di7erent $elds the theorem might be referred to as the Plancherel Identity or the 
Parseval’s Identity. This is why we will refer to it as the Plancherel–Parseval theorem 
within this paper. 
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Generalized Fourier Transform Up to this point we have de$ned the characteristic 
function in terms of real valued transform variables F. In certain cases it is convenient 
or even necessary to integrate a characteristic function along a line parallel to the real 
axis. For this case we can extend the domain of the transform variable F to the 
complex plane F � U � �, where the characteristic function is well behaved [Lukacs 
(1970), Theorem 7.1.1]. The set of values for U 
 U
 C iU{ , for which the expectation 
in Eq. (3.1) is well de$ned, is within some strip of regularity �E with � Q u�U� Q � 
parallel to the real U-axis. In these U-plane strips the extended characteristic functions D��U	 are typically regular functions, also known as analytic characteristic functions. 
Following Lukacs (1970), an analytic charactistic function is a characteristic function 
which coincides with a regular analytic function in some neighborhood of the origin 
in the complex U-plane. Under this extended de$nition D��U	 is called the generalized 
Fourier transform [see also Titchmarsh (1975)]. Since the transform variable is now 
extended to the complex plane the transform is also sometimes referred to as the 
complex Fourier transform. The inverse of this generalized Fourier transform is given 
by 

 K�L	 
 126  ��G�MG���#
G���# D�U	dU. (3.35) 

It is interesting to note that the generalized Fourier transform contains the Laplace 
transform if u�U� [ 0 and the cumulant generating function if u�U� Q 0 as special 
cases, provided that they are well de$ned. 

Generally, the properties for the ordinary Fourier transform also apply with little 
or no modi$cation to the generalized Fourier transform. For example, we mention 
the important fact that the Plancherel–Parseval identity also work for complex 
numbers U by an integration along a straight line parallel to the real axis 

  K}vdL 
 126  O�K��U
 C iU{	O�}�ZZZZZZ�U
 C iU{	dU
#
�#

#
�# , (3.36) 

if the functions K�L	 and }�L	 are well behaved at U{ . This will be an important 
property for later purposes. 
 
Further informations on the topic and a comprehensive reference for the theory of 
characteristic functions can be found in Lukacs (1970). More detailed discussions in 
the context of Fourier transforms can be found in Rudin (1987) and Titchmarsh 
(1975). Broad treatments of Fourier Theory including other scienti$c $elds are e. g. 
Allen and Mills (2004) and Du7y (2004). 
 

4 Pricing Formulae using Characteristic Functions 

With the knowledge of the characteristic function of the stochastic process 
determining the price dynamic of the state variables option prices are available by 



 

|   
 

16

Fourier inversion methods. In general there are two approaches in literature 
considering inverse Fourier transform. The $rst approach obtains option prices with 
respect to the Fourier inversion of cumulative distribution functions with an 
appearance like the classical Black–Scholes formula. This route was pioneered by the 
famous work of Heston (1993) and was re$ned and extended in many ways. Most 
noticeable is the work by Bakshi and Madan (2000) who give a clear economical 
interpretation of characteristic functions with respect to market completeness and 
Arrow–Debreu securities in a state space framework. Ross (1976) showed that 
options are completing or spanning markets by expanding the asset space. Bakshi and 
Madan (2000) demonstrate that markets can be equivalently spanned by 
characteristic functions. 

It is convenient to specify the characteristic function D�  as the expected value of 
the complex exponential of the logarithmic price L 
 ln ��  

 D��F	 
 �(�GHM) 
  �GHM#
�# !��L	dL, (4.1) 

where !�  is the risk neutral density of L relative to the martingale measure �. By 

Euler identity we can express D��F	 as ���cos�FL	 C i sin�FL	�. As we have seen the 
payo7 of a European option can be replicated by a portfolio of Arrow–Debreu 
securities and similarly the payo7 on characteristic functions can be composed of 
trigonometric sine and cosine functions. Therefore the characteristic function can be 
viewed as an Arrow–Debreu security in Fourier space 

 1��M � �	 
 126  ��GH����%	dF#
�# . (4.2) 

The characteristic function of the state price density is de$ned as follows 

 D��F	 
 �(��
��GHM), (4.3) 

 
  �GHM#
�# ��
�!��L	dL,  

which corresponds to a hypothetical claim that pays �GHM at �. 
The second approach considers the pricing of options analogue to the Fourier 

inversion of the probability density function. Carr and Madan (1999) show how this 
analogy can be used by analytically relating the Fourier transform of an option to its 
characteristic function. Along the same idea Lewis (2001) develops an option pricing 
framework where the payo7 structure is modeled explicitly and takes the Fourier 
transform with respect to the state variable, whereas Carr and Madan (1999) apply 
the transform to the strike value. In these cases the argument of the characteristic 
function is evaluated in a particular domain of the complex plane depending on the 
speci$c option payo7 to ensure the existence of the Fourier transform. 

Both Fourier inversion methodologies are applicable to a wide range of European 
payo7 structures. In the following we will focus on European options to illustrate the 
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various transform methods prevailing in the option pricing literature. Starting from 
the quasi Black–Scholes formula $rst introduced in Heston (1993), we discuss the 
similar developments by Attari (2004) and Bates (2006) and move on to the more 
Kexible Carr and Madan (1999), Lewis (2001) and Lipton (2002) option price 
characterizations. 
 

4.1 The Black–Scholes Style Formula 

Beginning with Heston (1993), many authors use the Fourier inversion methods to 
solve advanced valuation problems. Generalizing previous work Bakshi and Madan 
(2000) demonstrate the power and versatility of using characteristic functions for the 
pricing of contingent claims. They illustrate the use of Fourier transformed state price 
densities or Arrow–Debreu securities respectively, and how generic payo7s can be 
spanned by positions in characteristic functions. In fact Bakshi and Madan (2000) 
reduce the valuation problem to the estimation of Arrow–Debreu securities under 
appropriately modi$ed equivalent probability measures. 

The price of a European call with spot � and strike � is 

 ���$, �, �	 
 ��
������� � �	��, (4.4) 

 
 ��
�  ��� � �	�!���	d��#
$ .  

Decomposing the expression yields a portfolio of Arrow–Debreu securities 

 ���$, �, �	 
 ��
�  ��!���	d��#
% � ��
��  !���	d��#

% , (4.5) 

 
 ��
�  �M!�L	dL#
h � ��
��  !�L	dL,#

h   

 
 �Π< � ��
��Π,,  

where g 
 ln �. The quantities Π< and Π, are both conditional probabilities of 
$nishing in-the-money at maturity. Π< is computed with the stock as numéraire asset 
whereas Π, is computed with a zero coupon bond as underlying numéraire asset. For Π, we use _ !�L	dL#h  which is the probability s�L � g	. The characteristic function 

for Π, is D,�F	 
 D��F	 
 _ �GHM#�# !��L	dL, hence 

 Π, 
  � 126  ��GHM#
�# D��F	dF� dL.#

h  (4.6) 

Changing the order of integration yields to 

 Π, 
 126  D��F	#
�# � ��GHMdL#

h � dF, (4.7) 

which simpli$es to 
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 Π, 
 12 C 16  t w��GHhD��F	iF x dF.#
$  (4.8) 

The situation for Π< 
 ��
� _ �M!�L	dL#h  is a bit more subtle, since in this case the 

stock serves as numéraire. Introducing a change of measure from � to ��  by a Radon-
Nikodym derivative [compare Geman & al. (1995)] we get 

 
d��d� 
 �M0���M0�. (4.9) 

With this new measure ��  the Fourier transform of Π< is de$ned as 

 ��� (�GHM) 
 �(�M0�GHM)���M0� 
 D��F � i	D���i	 . (4.10) 

Because of the no arbitrage condition ������ 
 �$�
�  we get D���i	 as its 

characteristic function and for �(�M0�GHM) we get D��F � i	. Further note that �M!�L	 is nonnegative for all L and the integral over �0, ∞	 equals one. Hence, we 

can treat ��� (�GHM) as a probability function and invert it accordingly 

 Π< 
 12 C 16  t w��GHhD��F � i	iFD���i	 x dF#
$ . (4.11) 

The speci$c form of the formulae depend on the chosen de$nition of the 

characteristic function, i. e. whether it is de$ned for ln /0/; � �� or ln ��  [see Section 

5.2]. By using the second de$nition and depending on the de$nition of g, the above 
expression can be rewritten in a slightly di7erent form. For example, by changing g to 

a ‘dimensionless’ moneyness g 
 ln /;% C �� we obtain [as described in Lewis (2001)] 

 Π< 
 12 C 16  t w�GHhD��F � i	iF x dF#
$ , (4.12) 

 Π, 
 12 C 16  t w�GHhD��F	iF x dF#
$ . (4.13) 

The two integrals Π< and Π, can be combined into one integral. By rearranging the 
involved equations the Black–Scholes style formula for a call option reduces to 

 ���$, �, �	 
 12 ��� � ��
��	 

(4.14) 
 C 16  �$t w�GHhD��F � i	iF x � ��
��t w�GHhD��F	iF x dF.#

$  

While most authors use the real part of the complex valued integrand, it is also 
possible to use equation (3.18) instead of (3.17) [see, e. g. Du%e & al. (2000) and 
Bates (1996)]. This leads to  
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 Π� 
 12 C 16  u w��GHhD��F	F x dF#
$ . (4.15) 

Applying Euler identity to the probabilities Π< and Π, it yields to 

 Π� 
 12 C 16  u(D��F	) cos�Fg	 � t(D��F	) sin�Fg	F dF#
$ . (4.16) 

 

4.2 Attari’s Approach 

Attari (2004) proposes a modi$cation to the Black–Scholes Style solution. His 
inversion formula exploits the inherent relationship between the two probabilities Π< 
and Π, of a European option. Merging the two integrals Π< and Π, into one 
expression the calculation requires only one integral. Pointing out that !�L	 
<,� _ ��GHMD��F	dF#�#  and Π< 
 _ �M!�L	dL#h , substituting the expression for !�L	 

in Π< and de$ning g 
 ln %���0/;  yields 

 Π< 
  �M � 126  ��GHMD,�F	dF#
�# � dL#

h . (4.17) 

Changing the order of integration by Fubini’s theorem gives 

 Π< 
 126  D��F	#
�# � �M��GHMdL#

h � dF. (4.18) 

Using the fact that *Π<|h.�# 
 1, since a zero strike option equals �, we have 

 Π< 
 12 C 146  D��F	#
�# � �M��GHMdL#

h � dF, (4.19) 

 � 146  D��F	#
�# � �M��GHMdLh

�# � dF.  

Integrating the expression yields 

 Π< 
 12 C 126  D��F	 ��G�H�G	hi�F C i	#
�# dF (4.20) 

 � 146 lim��#  D��F	#
�# ��G�H�G	� C ��G�H�G	�i�F C i	 � dF.  

Expanding the last term and taking F � �F in the resulting second term gives 

 
146 lim��#  D��F	#

�# ��G�H�G	�i�F C i	� dF � 146 lim��#  D���F	#
�# ��G�H�G	�i�F � i	� dF. (4.21) 
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In the $rst integrand we have a pole at F 
 �i while for the integrand we have a pole 
at F 
 i. By using Residue Theorem the second integral for Π< and 26i times the 

residues at its poles we get 26i Res��i	 C Res�i	£ 
 26i :� G¤0��G	p� ? 
 ¤0��G	,  

 Π< 
 12 C 126  D��F	 ��G�H�G	hi�F C i	#
�# dF C D���i	2 . (4.22) 

The term D���i	 equals 1 (since *Π<|h.�# 
 1), hence we have 

 Π< 
 1 C �h26  ��GHhD��F	i�F C i	 dF#
�# . (4.23) 

Bringing it together with the expression of the call value this results in 

 ���$, �, �	 
 �$ �1 C �h26  ��GHhD��F	i�F C i	 dF#
�# � (4.24) 

 ���
�� �12 C 126  ��GHhD��F	iF dF#
�# �.  

Rearranging terms, applying Euler identity, and symmetry for real valued functions 
$nally turns to  

 ���$, �, �	 
 �$ � 12 ��
�� (4.25) 

���
�� 16  ¥t�D�F	� C u�D�F	�F ¦ cos�Fg	 C ¥u�D�F	� � t�D�F	�F ¦ sin�Fg	1 C F,
#

$ dF. 
This formulation o7ers a pricing formula involving a single one dimensional 
integration. We note that in comparison to the Black–Scholes like solution the 
integrand now has a quadratic term in the denominator which ensures a faster 
convergence of the integrand.  
 

4.3 Bates’ Approach  

A similar approach to that of Attari (2004) is outlined in Bates (2006). Here, the value 

of a European call option is evaluated by using the discounted CDF 
§¨§% 
���
� _ !���	d��#%  [see Breeden and Litzenberger (1978)], substituting the 

inversion formula for an arbitrary stochastic process governing !���	, and $nally 
integrating with respect to � results in 

 ���$, �, �	 
 �$ � ��
�� ©12 C 126  ��GH 89 %/; D��F	iF�1 � iF	 dF#
�# ª. (4.26) 
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�$ is an integration constant determined by the value of a zero strike call. Using the 
fact that option prices are real valued yields to 

 ���$, �, �	 
 �$ � ��
�� ©12 C 16  t «��GH 89 %/; D��F	iF�1 � iF	 ¬ dF#
$ ª. (4.27) 

Compared to the Black–Scholes style solution an advantage against is that this 
formulation requires only one integration and has an integrand which will converge 
faster due to the quadratic term in the denominator. 
 

4.4 Carr and Madan Approach 

Carr and Madan (1999) develop a di7erent method designed to use the fast Fourier 
transform (FFT) to value options. Unfortunately, the FFT cannot be applied directly 
to evaluate the integrals we mentioned above, since the integrands are singular at the 
evaluation point F 
 0. Therefore, instead of solving for the risk neutral exercise 
probabilities of $nishing in-the-money they introduce a new technique with the key 
idea to calculate the Fourier transform of a modified call option price with respect to 
the logarithmic strike price g. With this speci$cation and a FFT routine a whole 
range of option prices can be obtained within a single Fourier inversion. 

Again, beginning from the risk neutral valuation formula and a change of 
variables L 
 ln ��  and g 
 ln � we get for a European call option 

 ���g	 
 ��
������� � �	��, (4.28) 

 
 ��
�  ��M � �h	!�L	dL.#
h   

Unfortunately, expressing the call in terms of the log strike in (4.28), ��g	 tends to �$ 
as g goes to �∞ 

 ���g	 
 ��
�  ��M � ��#	!�L	dL#
�# , (4.29) 

 
 ��
�  �M!�L	dL#
�# ,  

 
 ��
�����M�.  

From martingale property ������ 
 �$�
� we see that limh��# ��g	 
 �$ is not 
converging to zero. Hence, ��g	 is not \< and a Fourier transform does not exist [see 
integrability condition (3.28)]. However, by introducing an exponential damping 

factor �­h  with � [ 0 it is possible to make ��g	 an integrable function 

 i��g	 
 �­h���g	, (4.30) 

where the modi$ed call price i��g	 is an integrable function, since 
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  |�­h���g	|dg Q ∞#
�# , (4.31) 

for a suitable �. The e7ect of an exponential damping factor on the integrability of 
call price functions is shown in Figure 3. 
 

 
Figure 3: E7ect of damping on the square integrability of call price functions. Left: Without damping 
the call price tends to �$ as g approaches minus in$nity. Right: Damping the call price function with 
di7erent values for the damping factor �. Heston model parameters: � 
 � 
 100, � 
 1, � 
 0.05, ® 
 2, ¯ 
 0.01, ° 
 �0.5, 3± 
 0.25 and ²$ 
 0.02. 

The Fourier transform of i�g	 is then given by 

 ³�F	 
  �GHh#
�# i�g	dg, (4.32) 

 
  �GHh#
�#  �­h��
���M � �h	�!�L	dL#

�# dg,  

 
  �GHh#
�#  �­h��
���M � �h	!�L	dL#

h dg,  

 
  ��
�!�L	#
�# � ��M � �h	�GHh�­hdgM

�# � dL.  

For the inner integral, representing the call payo7, we get 

  ��M � �h	�GHh�­hdgM
�# 
 �M  ��­�GH	hdgM

�# �  ��­�GH�<	hdgM
�# , (4.33) 

 
 �M� C iF (��­�GH	h)�#M � 1� C iF C 1 (��­�GH�<	h)�#M .  

Taking the limit for limh��# ��­�GH	h 
 0 with � [ 0 we get 

 ���­�<�GH	M� C iF � ��­�<�GH	M� C 1 C iF�. (4.34) 

Hence leading to 
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 ³�F	 
  ��
�!�L	#
�# ���­�<�GH	M� C iF � ��­�<�GH	M� C 1 C iF� dL, (4.35) 

 
 ��
�  !�L	#
�#

��­�<�GH	M�� C iF	�� C 1 C iF	 dL.  

Taking the Fourier transform for _ !�L	#�# ��­�<�GH	M 
 _ !�L	#�# �G�H��­�<		M we get 

the characteristic function for the risk neutral price process D��F � �� C 1	i	. 
Finally we have 

 ³�F	 
 ��
�D��F � �� C 1	i	�, C � � F, C i�2� C 1	F, (4.36) 

where ³�F	 is expressed in terms of the characteristic function D� . 
In a last step, given ³�F	, an inverse Fourier transform multiplied by the 

reciprocal of the exponential factor yields to the undamped call prices 

 ���g	 
 ��­h26  ��GHh³�F	#
�# dF, (4.37) 

 
 ��­h6  t(��GHh³�F	)#
$ dF.  

This method is viable when � is chosen in a way that the damped option price is well 

behaved. Damping the option price with �­h  makes it integrable for the negative axis g Q 0. On the other hand for g [ 0 the option prices increase by the exponential �­h  
which inKuences the integrability for the positive axis. A su%cient condition of i��g	 
to be integrable for both sides (square integrability) is given by ³�0	 being $nite 
[compare Section 3.3 on the Fourier transform to square integrable functions via the 
Plancherel–Parseval idendity]. With F 
 0 

 ³�0	 
 ��
�D����� C 1	i	�, C � . (4.38) 

Thus we need D����� C 1	i	 Q ∞ which is equivalent to 

 D����� C 1	i	 
 ��(��<�­) Q ∞ (4.39) 

Therefore, i��g	 is well behaved when the moments of order 1 C � of the underlying 
exist and are $nite. If not all moments of ��  exist, this will impose an upper bound on �. 

The corresponding put values can be obtained by de$ning 

 ´��g	 
 ��­hµ��g	, (4.40) 

with Fourier transform 

 ³¶�F	 
 ��
�D��F � ��� C 1	i	�, � � � F, C i��2� C 1	F. (4.41) 
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And $nally the put prices can be written as 

 µ��g	 
 �­h6  t(��GHh³¶�F	)#
$ dF. (4.42) 

For the put formula to be well defined, is su%ces to choose an appropriate � [ 0 in a 

way that ������­� Q ∞ [see Lee (2004)]. 
The Carr and Madan (1999) formulation is di7erent to the previous described 

ones in a sense that not only the risk neutral density function but the whole option 
price is Fourier transformed. This is possible through the introduction of an 
additional degree of freedom which makes the integral in (4.37) in fact a generalized 
Fourier transform, since 

 
126  ��G�h³�U	G���#

G���# dU
 
 16  t(��G�h³�U	)#�G��
$�G�� dU
 , (4.43) 

 
 ���h6  t(��G��h³�U
 C iU{	)#
$ dU
 .  

Therefore, the modi$cation technique removes the non-smooth-behavior of the pole 
at the origin by shifting the pole to a less numerically sensitive position on the 
imaginary axis. The interpretation of the integration of a damped function as a 
contour integral in the complex plane is $rst considered by Lewis (2001) and is 
discussed in detail in Lee (2004). 

Carr and Madan (1999) notice that for very short maturities, the call value 
approaches its non analytic intrinsic value causing the integrand in the Fourier 
inversion to be highly oscillatory and therefore di%cult to integrate numerically. To 
mitigate this numerical inconvenience, the authors propose an alternative approach 
which they call the Time Value method. The reasoning is quite similar to the previous 
approach. But in this case the call price is obtained via the Fourier transform of a 
modi$ed time value, where the modi$cation involves a hyperbolic sine function 
instead of an exponential function. 

Let U��g	 denote the time value of an out-of-the-money option, i. e. for g Q L we 
have the put price for U��g	 and for g [ L we have the call price. Scaling �$ 
 1 for 
simplicity, U��g	 is de$ned by 

 U��g	 
 ��
�  (��M � �h	·M¸h,h¸$ C ��M � �h	·M¹h,h¹$)!�L	dL#
�# , (4.44) 

where · denotes the indicator function. Furthermore let º��F	 be the Fourier 
transform of U��g	 

 º��F	 
  �GHh#
�# U��g	dg. (4.45) 

The prices of out-of-the-money options can be obtained by an inverse Fourier 
transform 
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 U��g	 
 126  ��GHhº��F	dF#
�# . (4.46) 

By substituting (4.44) into (4.45) and writing in terms of characteristic functions1 the 
expression for º��F	 follows as 

 º��F	 
 ��
� � 1iF C 1 � D���i	iF � D��F � i	iF�iF C 1	�. (4.47) 

There are no issues regarding the integrability of this function as g tends to ∞ or �∞, 
but the time value at g 
 0 can get rather steep as � � 0 which is making the Fourier 
transform wide and oscillatory. This e7ect can be alleviated by considering a damping 
function sinh��g	 

 ¼��F	 
  �GHh#
�# sinh��g	U��g	dg,  

 
  �GHh#
�#

�­h � ��­h2 U��g	dg,  

 
 º��F � i�	 � º��F C i�	2 . (4.48) 

Hence, the time value of an option follows a Fourier inversion 

 U��g	 
 1sinh��g	 126  ��GHh¼��F	dF#
�# ,  

 
 1sinh��g	 16  ��GHh¼��F	dF#
$ . (4.49) 

Another re$nement to the sharp peak at g 
 0 is due to the simple observation that g Q L for puts and g [ L for calls unnecessarily creates a small discontinuity in U��0	. By using ln r with r 
 ��
� instead, U��g	 is ensured to be continuous [see 
McCulloch (2003)]. The Time Value modi$cation is also designed for the use of the 
FFT and claims more regular results for short maturities. 
 

4.5 Lewis’ Approach 

The Fourier pricing setup introduced in Lewis (2001) generalizes previous work on 
Fourier transform methods2. Key to his contribution is the idea to express the option 
value as convolution of generalized Fourier transforms and then apply the 

                                                        
1 The formulation slightly di7ers from the one in Carr and Madan (1999), there seems to be no 

uniformity for the normalization of D� ��i	. If the martingale property requires D� ��i	 
 �
�  the 
expressions are all equal. 

2 The pricing method was $rst developed in Lewis (2000) as ‘The Fundamental Transform’, however, 
due to the detailed discussion and thorough derivations in Lewis (2001), the pricing framework is 
commonly referred to as the Lewis (2001) methodology. 
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Plancherel–Parseval identity instead of integrating over a discounted transition 
density times a payo7 function. The transform representations of option prices may 
be interpreted as contour integrals in the complex plane. By shifting the contours and 
applying Residual Calculus it is possible to generate alternative pricing formulae. 

For each derivative there exists a known payo7 function ����	 at maturity. The 
payo7 for a call option is ��L	 
 ��M � �	� with L 
 ln �� . Instead of transforming 
the whole option price including the payo7 function as described in Carr and Madan 
(1999), Lewis (2001) emphasizes the fact that payo7 functions also have 

representations in Fourier space �½�U	 
 _ �G�M��L	dL#�# . Unfortunately, ��M � �	� 

is an unbounded function and does not belong to \<. Thus, the de$ning integral is 
not $nite as �½�U	 
 O���L	� � ∞ and the Fourier transform does not exist. This 
issue can be circumvented by considering an exponential damping factor, just like in 
the Carr and Madan (1999) approach. For a modi$ed payo7 we have a regular 
Fourier transform, since ��M � �	�����M � 0 as L � ∞ for some appropriate U{ . This 
corresponds to a Fourier transform along a line in the complex plane where the path 
of integration is parallel to the real axis. A direct calculation for the call option payo7 
yields to 

 �½�U	 
  �G�M��M � �	�dL#
�# ,  

 
  �G�M��M � �	dL#
89 % ,  

 
 *���G��<	MiU C 1 � � �G�MiU �-89 %,
M.#

  

 
 0 � ��G��<iU C 1 � � �G�iU �,  

 
 � �G��<U, � iU, (4.50) 

with U being a complex valued number. The upper limit L 
 ∞ only exist under the 
condition u�U� [ 1 which implies that the Fourier transform is well behaved only 

within a certain strip of regularity �¾ in the complex domain (�G��< has a branch 
point at U 
 i). It is interesting to note that the transformed payo7 for the put has the 
same functional form, but it is de$ned in a di7erent strip in the complex plane with U{ Q  0. 
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Figure 4: Strip of regularity for transformed call and put payo7 functions. Upper $gure: Strip for call 
options with u�U� [ 1. Lower $gure: Strip for put options with u�U� Q 0. 

In general, the strip of regularity is restricted to � Q u�U� Q � for typical derivatives 
payo7s with ��, �	 � ] [see Table 1]. Given the generalized payo7 transform the 
corresponding inverse transform is then 

 ��L	 
 126  ��G�M�½�U	dUG���#
G���# . (4.51) 
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Table 1: Generalized Fourier Transforms for a variety of $nancial claims. The expression 1�L � L¿	 
denotes the Dirac delta function and · is the indicator function. 

Financial Claim Payo7 Function ��L	 

Payo7 Transform �½�U	 
 O���L	� 

Strip of Regularity �¾ 

    
Call ��M � �	� � �G��<U, � iU u�U� [ 1 

Put �� � �M	� � �G��<U, � iU u�U� Q 0 

Covered Call; 

Cash-Secured Put 
min��M , �� 

�G��<U, � iU 0 Q u�U� Q 1 

Cash-or-Nothing Call ·��À%  � �G�iU  u�U� [ 0 

Cash-or-Nothing Put ·��Á%  
�G�iU  u�U� Q 0 

Asset-or-Nothing Call �M·��À%  � �G��<iU C 1 u�U� [ 1 

Asset-or-Nothing Put �M·��Á%  
�G��<iU C 1 u�U� Q 0 

Delta function; 

Arrow–Debreu 
1�L � ln �	 �G� entire U-plane 

Money market 1 261�U	 u�U� 
 0 

     
Assuming that we have a well de$ned characteristic function D��U	 with U � �E for 
an arbitrary price dynamic and a transformed payo7 �½�U	 with U � �¾, we can 
proceed by applying martingale pricing to obtain the option value 

 ���$, �, �	 
 ��
������L	�, (4.52) 

 
 ��
�26 �� w ��G�M�½�U	dUG���#
G���# x,  

 
 ��
�26  ��(��G�M)�½�U	dUG���#
G���# ,  

 
 ��
�26  D���U	�½�U	dUG���#
G���# .  

Above we have stated that the extended characteristic function D��U	 with U � � is 
well de$ned in �E. Due to the reKection symmetry property for a real valued function D�ZZZZ�U	 
 D���Uv	, D���U	 is well behaved in the conjugate strip of regularity �EZZZ as 
well, where the real U-axis is the line of symmetry. For the whole integral being well 
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behaved we need a U � �Â in a way that there is a intersection between �EZZZ and �¾ 

(�Â 
 �EZZZÃ�¾). If the inversion contour is taken along this strip �Â then the integral 
converges absolutely and we may change the order of integration by Fubini’s 
Theorem. The change of integration is required to take the expectation inside the 
integral. 

Figure 5: Contour of integration for the European call option. The contour of integration is shifted 
from the real axis to U � �Â in order to make both the option payo7 (here the call) and the price 
process well behaved. 

The valuation formula is obtained by considering the integration of a state price 
density times the payo7 function as a convolution representation in Fourier space by 
a direct application of the Plancherel–Parseval identity 

 ��
�  ��L	!�L	#
�# qL 
 ��
�26  D���U	�½�U	dUG���#

G���# , (4.53) 

where D���U	 is the conjugate Fourier transform of the risk neutral density of the log 
spot. 

Applying the payo7 transform of a call option (4.50) the call price is given by 

 ���$, �, �	 
 � ���
�26  ��G�hD���U	 dUU, � iUG���#
G���# , (4.54) 

with g 
 ln /;% C �� in the phase factor ��G�h and U{ � �Â. With the de$nition of g, 

the forward stock price is equal to the strike price for the option at-the-money. 
Incidentally the same formula works for the put option value by imposing U{ Q  0. 

The integrand in (4.54) is regular in the strip �EZZZ, except in the case where the 
denominator U, � iU is zero. This will happen at two poles, at U 
 0 and U 
 i. The 
residue for the pole at U 
 i is 

u�U� 

t�U� U 
 0 

U{ 
 1 

Strip of Regularity �¾ 

Strip of Regularity �E  

Contour of Integration 
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 Res�i	 
 lim��G w�U � i	 �� ���
�26 ��G�h D���U	U, � iU �x, (4.55) 

 
 �D���i	i26 
 i�26.  

By moving the integration contour to U{ � �0,1	 and according to the Residue 
Theorem the call option value must equal the integral along u�U� 
 U{  minus 26i 
times the residue at U 
 i which is �. This is leading to a slightly di7erent formula 

 ���$, �, �	 
 �$ � ���
�26  ��G�hD���U	 dUU, � ÄUG���#
G���# . (4.56) 

A convenient choice is to shift the contour by U{ 
 <,, because then the path of 

integration is symmetrically located between the two poles. The change of variables U 
 F C G, and employing the symmetry property for real valued functions gives 

 ���$, �, �	 
 �$ � √����
�/ ,6  t Å��GHhD� ¥�F � i2¦Æ dFF, C 14
#

$ ,  

 
 �$ � √����
�/ ,6  t Å�GHhD� ¥F � i2¦Æ dFF, C 14
#

$ . (4.57) 

For this particular case the change of sign in the characteristic function does not 
change the value of the integral as long as the sign in the corresponding phase factor 
is changed as well. The $rst representation can be found in Itkin (2005) while in 
Lewis (2001) the lower expression is deduced. 

For the put option a similar contour as in (4.54) can be used, however, the strip is 
then de$ned by u�U� Q 0. By shifting the contour crossing both poles at U 
 0 and U 
 i we additionally pick up the residue for U 
 0 and $nd that 

 Res�i	 
 lim��$ wU �� ���
�26 ��G�h D���U	U, � iU �x, (4.58) 

 
 � ��
��D��0	i26 
 � i���
�26 .  

By Residue Theorem we then $nd an alternative formulation for the put option 

 µ��$, �, �	 
 ���
� � ���
�26  ��G�hD���U	 dUU, � ÄUG���#
G���# . (4.59) 

Putting together the resulting formulae for calls and puts we obtain 

 � 
 � � ��
�� C µ, (4.60) 

and receive the put call parity relation. 
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By moving the contours to exactly u�U� 
 1 and u�U� 
 0 the integrals become 
principal value integrals and by Residue Calculus one half of the residues are picked 
up. Calculating the resulting two integrals at the two involved poles recover the Black-
Scholes like solution [see Lewis (2000), Lewis (2001) and Sepp (2003) for details]. 
 

4.6 Lipton’s approach 

A similar approach to Lewis (2001) is described by Lipton (2002) in the context of FX 
option pricing. Lipton presents his approach tailored towards some selected models. 
First we state a general formulation 

 ���$, �, �	 
 �$ � ���
�26  �:GH�<,?hD� ¥F � i2¦ dFF, C 14
#

�# ,  

 
 �$ � ���
�6  t Å�:GH�<,?hD� ¥F � i2¦Æ dFF, C 14
#

$ . (4.61) 

The derivation of the Lipton (2002) approach is similar to the reasoning of Lewis 
(2001) by considering a Plancherel–Parseval style relation [see Lipton (2001)]. 

As an example, we derive the formulation for Black–Scholes model given in 
Lipton (2002). Recalling the characteristic function for the Gaussian model (5.10) we 

have DÇ/ 
 exp ÉiUÊ� � <, U,3,�Ë with Ê 
 � <, 3,. Substituting U 
 F C G, into DÇ/  

gives exp É� =>, � :F, C <p?Ë and $nally leads to 

 �Ç/��$, �, �	 
 �$ � ���
�26  �:GH�<,?h�:H>�<p?=>, �
F, C 14 dF#

�# , (4.62) 

 
 �$ � ���
�6  t w�:GH�<,?h�:H>�<p?=>, �x dFF, C 14
#

$ .  

We note that the Lipton formulation looks somewhat di7erent to the Lewis approach, 

and they are in fact equivalent. The connection lies in between the term √�����0>  in 

Lewis’ formula and the phase factor �:GH�f>?h  in Lipton’s formula. Expanding the last 

term yields to �GHh�f>h, then bringing �f>h  outside the integrand and using the 
de$nition of g, and we get the results of Lewis’ representation.  
 

4.7 Concluding Remarks and Recent Developments 

In this section we revisited numerous Fourier inversion methods for the pricing of 
European options. There are a number of similarities and parallelisms between those 
prevailing concepts. The method developed at $rst in Heston (1993) o7ers the same 
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intuitive interpretation of the valuation problem as the classical Black–Scholes 
formula and it was remarked the method of choice for Fourier pricing applications 
until more e%cient methods came up. The two methodologies from Attari (2004) and 
Bates (2006) exploit the tight relation of the risk neutral exercise probabilities o7ering 
a single integral solution with advantageous convergence properties. An algorithm 
similar to Attari (2004) and Bates (2006) is developed in Wu (2008) by treating an 
option value analogous to a cumulative density function. 

In Lewis (2001), the direct relationship of the log spot characteristic function in 
Image space is used from a more general point of view by representing the valuation 
formulae as contour integrals in the complex plane. The impact of an additional 
damping parameter is hereby characterized as the e7ect on the option prices 
depending on the choice of a particular path of integration in the complex plane. In 
this sense, the Carr and Madan (1999) methodology appears as a special case of Lewis 
option pricing formulae. Another aspect is that the entire separation of Fourier 
transforms for the underlying price dynamics and the payo7 function allows for a 
modular pricing framework which is facilitating particular valuation problems for 
more advanced payo7 structures. 

A great e7ort is made by Lee (2004) in unifying and generalizing the previous 
work of Du%e & al. (2000), Bakshi and Madan (2000), Carr and Madan (1999) and 
Lewis (2001). In Du%e & al. (2000) four di7erent payo7 classes are considered and 
are extended to the Carr and Madan (1999) framework. From Bakshi and Madan 
(2000) the concept of a discounted characteristic function is adapted to allow for 
stochastic interest rates. By recognizing the Carr and Madan (1999) formulation as a 
contour integral [see Lewis (2001)] complementary valuation formulae are provided 
by shifting the contour integrals in the complex plane and applying Residue Theory. 
Moreover Lee (2004) provides error bounds for the discretized Fourier inversion and 
discusses error minimization strategies. 

Other authors have derived similar formulae for the valuation problem of 
European options. For example, the approach chosen by Raible (2000) is nearly 
identical to the Lewis (2001) methods by using a convolution representation for the 
expectation of the payo7 at maturity. The only di7erence is considering a two sided 
(or bilateral) Laplace transform of a modi$ed payo7 function instead of a generalized 
Fourier transform. His discussion also includes other European payo7s like power 
and self-quanto options. The inversion integrals are then evaluated by means of the 
FFT algorithm. Besides, methods for simple vanilla products using similar 
assumptions like Raible (2000) or Lewis (2001), Borovkov and Novikov (2002) 
develop an approach for the valuation of barrier type options based on the integration 
of moment generating functions for general Lévy processes. 

One purpose of this section is to give a detailed overview of the underlying 
theory to value options with Fourier inversion methods. These methods are refined in 
many ways for more elaborate valuation problems, or serve as building blocks to 
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other areas in the field of mathematical finance. In the following we concisely present 
more methods and techniques which are tightly related to the discussed approaches.  

As mentioned previously, the Fourier transform based approach works for a lot 
of European payo7 structures. Agliardi (2009) provides a comprehensive 
characterization for Compound Options, Multi-period Power Binaries, Power 
Digitals, and Supershare Options including relevant strips of regularity for arbitrary 
Lévy processes. While the mathematical foundations in Section 3 su%ce for the 
payo7 functions considered in this paper, more elaborate payo7s or multidimensional 
applications need a much more detailed consideration. A systematic analysis is 
o7ered by Eberlein & al. (2009) of the conditions required for the existence of Fourier 
transform formulae in a general framework, i. e. when options have arbitrary payo7 
functions and possibly depend on the path of the stochastic process.  

Dempster and Hong (2000) introduce an integration methodology based on 
double fast Fourier transforms for spread option pricing that is ef$cient for geometric 
Brownian motion and more sophisticated price processes. A recent contribution for 
the use of Fourier transform methods for spread options comes from Hurd and Zhou 
(2009) by expressing the spread option payo7 in terms of the gamma function and 
applying the FFT technology from Carr and Madan (1999). 

The introduced Fourier techniques have been extended in many di7erent ways, 
including the pricing of path dependent derivatives. For instance Cardi (2005) 
develops a valuation formula to discrete Barrier options based on the Lewis (2001) 
methodology. Use of FFT methods to price discrete Asian options is considered in 
Benhamou (2000). 

A versatile numerical method to the valuation problem of early exercise options 
and certain path dependent options by means of a quadrature method (QUAD) is 
introduced in Andricopoulos & al. (2003). By recognizing that the payo7 of an option 
can be segmented, the integration of the payo7 is only carried out over continuous 
segments of the payo7 and evaluated with numerical quadratures. However, the 
method requires analytical transition densities like the Gaussian. To relax this 
requirement O’Sullivan (2005) introduces the QUAD-FFT method, by considering 
the one to one connection from density functions with their characteristic functions 
makes the QUAD method applicable for a wide range of stochastic processes. Exotic 
features can be incorporated by applying the option pricing formula recursively. The 
Convolution method (CONV) developed in Lord & al. (2007) follows a similar idea 
by considering option values as a convolution of a payo7 function with a probability 
distribution and taking the QUAD and QUAD-FFT methods into Fourier domain. 

In an empirical study about Lévy option pricing models by Ji and Zapatero 
(2008) the authors extend the quadratic approximation method from Barone-Adesi 
and Whaley (1987) which approximates the early exercise premium of American 
options under Black–Scholes assumptions to exponential Lévy models. American 
options are then the sum of the European Fourier prices and the approximated early 
exercise premium. 
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It must not be the case that the characteristic functions are known in closed 
form, for instance the Heston (1993) characteristic function is an analytic solution to 
a system of ordinary di7erential equations (ODE). In fact, these ODE’s can be solved 
numerically, too, which is often the only choice for similar advanced price dynamics 
[see e. g. Dobránszky (2009)]. Fourier pricing is even applicable in non parametric 
models by replacing the unknown characteristic function with its empirical version, 
e. g. Binkowski (2007) infers the empirical characteristic functions from quoted 
option prices and compares the results to some parametric cases. 

Kruse and Nögel (2005) extend the Fourier valuation method to European 
forward starting options assuming the stochastic volatility framework initially 
introduced in Heston (1993) by a change of measure technique. Nunes and Alcaria 
(2009) amend the two dimensional Kruse and Nögel (2005) approach to a single 
integral solution based on the Attari (2004) formulation. 

Fourier inversion methods are applicable for the e%cient calculations of 
derivatives in other frameworks as well. By noting that the call and put like payo7s 
also occur frequently in insurance industry Dufresne & al. (2009) consider the 
Plancherel–Parseval identity to calculate stop-loss or excess-of-loss premiums. In 
addition to the exponential damping ensuring the integrability of the payo7s, they 
additionally examine polynomial damping factors and illustrate their $ndings with 
Compound Poisson, (Generalized) Pareto and �-stable distributions. 

Another important area is the valuation of interest rate derivatives. Attari (2004) 
is also considering his modi$cation to interest rate products. Andreasen (2006) 
develops a full yield curve model with stochastic volatility following the work of 
Andersen and Andreasen (2002) and using results from Heston (1993), Lewis (2000) 
and Lipton (2002). The resulting model resembles a shifted Heston model which 
allows the use of the introduced Fourier inversion techniques and gives good $t to 
observed cap and swaption prices. 

In Bouziane (2008) a general pricing framework is established for the pricing of 
interest rate derivatives based on the methodology introduced in Lewis (2001). In this 
Kexible framework a wide range of interest rate derivatives are priced with either 
conditional or unconditional exercise rights. He further develops an e%cient method 
to price derivatives for a whole range of strike prices similar to the FFT methodology 
from Carr and Madan (1999) named the IFFT algorithm. 

Fourier based methods also gain increasingly popularity in the $eld of 
defaultable assets. For example, Grundke (2007) presents an integrated market and 
credit portfolio model and extends the CreditMetrics model by correlated interest rate 
and credit spread risk. Sepp (2006) generalizes the CreditGrades model for stochastic 
volatility and jump di7usion speci$cations, estimates default probabilities using 
equity options, and applies these models for the modeling of credit default swap and 
equity default swap spreads. Stochastic volatility frameworks for credit and interest 
rate derivatives using numerical quadratures can be found in Tahani (2004) and 
Tahani and Li (2007). 
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In Gatheral (2006) an overview of applications to volatility derivatives is given. 
Further, he shows how to infer at-the-money Black–Scholes implied volatilities or the 
at-the-money Volatility Skew directly from characteristic functions without the need 
of $rst calculating the price and then using a root $nding algorithm in conjunction 
with a Black–Scholes pricing engine. The exposition in this section resembles only a 
small subset of possible applications, but gives an idea of the versatility of Fourier 
methods in $nancial modeling. 
 

5 Applications of Inverse Fourier Methods to Distribution 

Functions and Option Pricing 

In this section we will illustrate some of the most widely used concepts of numerical 
evaluation of inverse Fourier integrals. Two methods will be compared. On one hand 
the direct integration methods, on the other hand the fast Fourier transform 
algorithms are considered. Each of these procedures has their own advantageous 
properties compared to the other routines. In any case, the application of the 
procedures requires considering numerical and technical issues with precautions.  
 

5.1 Numerical Evaluation of Inverse Fourier Integrals 

To obtain probability densities or option prices, the inversion of the Fourier integrals 
can be evaluated by means of standard numerical integration schemes. Numerical 
integration of functions is a broad subject and rich in terms of possible techniques. In 
this section we will brieKy review some of the most frequently used numerical 
quadrature schemes to evaluate the semi-in$nite domain of oscillatory functions 
encountered in Fourier analysis. 
 
Direct Integration Methods 

It is well known that an integral can be represented as the area under the curve of a 
function in between a speci$ed interval. A powerful procedure is to approximate the 
searched interval by simple geometrical objects like rectangles. More sophisticated 
rules are the Newton–Côtes formulae where the interval is approximated by some 
interpolating polynomials usually in Lagrange form which in turn are easily 
computable. The Trapezoidal and Simpson’s rules are probably the most popular and 
commonly used Newton–Côtes integration schemes available. While having a clear 
geometrical and intuitively obvious interpretation, there are alternatives which o7er 
higher computational e%ciency, namely the family of Gaussian quadratures. A 
Gaussian quadrature tries to give an accurate estimate for an integral by optimally 
choosing abscissas where to evaluate a particular function. Following the 
Fundamental Theorem of Gaussian Quadrature the optimal abscissas are exactly the 
roots of orthogonal polynomials for the same interval and weighting function. In the 
sequel we implement and compare a number of widely used algorithms. 
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Gauss–Legendre quadrature formula This is perhaps the best known Gaussian 
quadrature formula usually speci$ed for an integration domain over ��1,1�. A Ì-
point quadrature is then given by 

  K�L	dL<
�< Í Î �{K�L{	Ï�<

{.$ . (5.1) 

The resulting orthogonal polynomials are the Legendre polynomials for the weighting 
function ��L	 
 1. Thus the nodes are the Ì zeroes of the Legendre polynomial of 
degree Ì. 

The integration interval may be changed to arbitrary interval �b, c� by following 
change of variables 

  K�L	dL�
e Í c � b2 Î �{K ¥c C b2 C c � b2 L{¦Ï�<

{.$ . (5.2) 

Proceeding this way the quadrature is applied to the transformed integrand with 
modi$ed integration limits. 

Depending on the actual problem it may be an appropriate procedure to apply 
the Gauss–Legendre formula not on the whole interval but decompose the integration 
region into subintervals and sum up the particular approximations 

 Ð�L	 
  K�L	dL#
$ 
 limÏ�# Î  K�L	dL���<	Ñ

�Ñ
Ï�<
�.$ . (5.3) 

The $xed step size Ò denotes the discretisation length and Ì is the truncation point. 
As Ì � ∞ and Ò � 0 the numerical quadrature will approach the theoretical value. 
 
Gauss–Laguerre quadrature formula The Gauss–Laguerre quadrature evaluates an 
exponentially weighted integral from zero to in$nity as 

  K�L	dL#
$ 
  ��M��MK�L	�dL#

$ 
  �{�MK�L	dL#
$ , (5.4) 

 Í Î �{�M�K�L{	Ï�<
{.$ 
 Î �{K�L{	Ï�<

{.$ .  

The resulting orthogonal polynomials are the Lagrange polynomials with weighting 
function ��L	 
 ��M. This quadrature is particular interesting since all of our 
applications have semi-in$nite domains of integration ranges. 
 
Adaptive Simpson quadrature The idea of using adaptive algorithms for the 
numerical calculation of integrals is dating back to at least McKeeman (1962). Since 
then many new and sophisticated algorithms have been developed, among these 
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Gander and Gautschi (2000) propose an e%cient and reliable implementation of the 
adaptive Simpson rule. 

The adaptive control strategy divides the area of integration in subintervals, 
evaluates the integral at each region and uses an error estimate of the integral to check 
if a speci$ed error tolerance is met. At regions where the function is well 
approximated by a quadratic function, only a few function evaluations are needed, in 
other areas the adaptive strategy evaluates the subintervals in a recursive manner. 
 
Adaptive Gauss–Lobatto quadrature The second quadrature implemented in the 
paper from Gander and Gautschi (2000) builds upon a Gauss–Lobatto quadrature 
modi$ed by a Kronrod extension to add an e7ective error control procedure. The 
Lobatto formula has preassigned abscissas at the end points of the interval. The 
remaining nodes and all weights are then determined in a way to obtain the highest 
exactness possible. The Kronrod extension is used to provide an estimate of the 
approximation error. If the error exceeds a speci$ed tolerance, regions where the 
function is not so well behaved will be divided over again and again. 
 
Adaptive Gauss–Kronrod quadrature The Gauss–Kronrod quadrature is an 
extension of the Gauss–Legendre algorithm. For well behaved regions the error 
estimates will be small and the numerical approximations will be accepted. For 
integration areas where the function is not smooth, the algorithm subdivides the 
interval until the desired accuracy will be reached. 
 
For detailed discussion on numerical quadratures we refer to the extensive literature 
available on this subject. Key reference on numerical integration is Davis and 
Rabinowitz (1984). Detailed descriptions in a $nancial context can be found in Fusai 
and Roncoroni (2008) and Judd (1998).  
 
Fast Fourier Transform and Fractional Fourier Transform 

The Fast Fourier Transform (FFT) is a highly e%cient implementation of the discrete 

Fourier transform (DFT) which maps a vector Ó 
 �Ò�	�.$Ï�< onto some vector Ôh�Ó	 

 Ôh�Ó	 
 Î ��G,�Ï �hÒ�
Ï�<
�.$ , g 
 0, … , Ì � 1 (5.5) 

By choosing Ì as a power of two, the complexity of the algorithm reduces from an 
order of Ì, for the direct numerical integration methods to that of Ì log, Ì 
operations to compute Ì values. The Fourier transform of the vector Ó will be 

denoted with Ôh�Ó	 � �Ï . The vector Ó � �Ï  corresponds to Ì values of the 

function Ò evaluated at the points × 
 �F�	�.$Ï�<. 

A result of the FFT procedure will be a new vector Ø 
 �Kh	h.$Ï�<, where each of 
the elements Kh  correspond to a speci$ed value of L 
 Lh. For example, for the 
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purpose of density evaluations Lh will typically be chosen in a way that the values are 
located around the mode. In the context of option pricing, Carr and Madan (1999) 
demonstrate that the vector Ø will contain option values corresponding to carefully 

chosen Ù 
 �Lh	h.$Ï�< in a sense that the resulting values are around the at-the-money 
level, i. e. the values of L are typically kept close to zero. 

Following Carr and Madan (1999) we denote the grid size of the vector × with Ú 
and Û is the spacing of Ù. In the case of conventional FFT procedures Ú and Û are 
restricted by imposing an inverse relation 
 ÚÛ 
 26Ì . (5.6) 

The $ner the summation grid spacing Ú, the coarser the output spacing returned 
from the FFT procedure will be and vice versa. 
 
The fundamentally inKexible nature imposed by the restriction (5.6) was addressed by 
Bailey and Swarztrauber (1991, 1994) who overcome this constraint by developing a 
generalization of the conventional DFT, the Fractional Fourier Transform (FRFT). 

It is de$ned as 

 Üh�Ó, �	 
 Î ��G,��h­ Ò�
Ï�<
�.$ , g 
 0, … , Ì � 1 (5.7) 

The fractional parameter � may be any arbitrary real or complex valued number. In 
this framework both Ú and Û may now be chosen freely which will together determine 
the FRFT parameter � 
 ÚÛ. The ordinary FFT and its inverses are special cases of 

the FRFT for � 
 <Ï. A Ì-point FRFT can be implemented by invoking two forward 

and one inverse 2Ì-point FFT calculations. The algorithms works as follows, de$ne 
two 2Ì-point sequences Ý and Þ as 

 �� 
 Ò���G��>­  0 ` ß Q � 

(5.8) 
 �� 
 0  à ` ß Q 2� 

 U� 
 �G��>­  0 ` ß Q à 

 U� 
 �G����,�	>­ à ` ß Q 2� 

The FRFT is then given by 

 Üh�Ó, �	 
 ��G�h>­Ôh�<á(Ô��Ý	áÔ��Þ	), 0 ` g Q � (5.9) 

where Ôh�< denotes an inverse FFT calculation and á denotes element-by-element 
vector multiplication. The exponential factors do not depend on the function to be 
integrated and may be precomputed. The computational cost of a Ì-point FRFT 
procedure is about a 4Ì-point FFT in terms of the number of elementary operations. 
The additional bene$t by employing a FRFT instead of running a single FFT is due to 
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the fact that a FRFT with smaller Ì may achieve the same accuracy as using a FFT 
with much larger Ì. 
 

5.2 Examples of Characteristic Functions for Particular Price 

Dynamics 

In order to illustrate the basic concepts and investigate the standard numerical 
procedures we will brieKy introduce three candidates of exponential Lévy processes 
and exponential a%ne models. We just state the corresponding characteristic 
functions and refer to the respective references for detailed discussion and 
derivations. Comprehensive treatments on Lévy processes and a%ne models with 
Fourier pricing applications can be found in Cont and Tankov (2004), Boyarchenko 
and Levendorskiĭ (2002) and Schoutens (2003).  
 
Black–Scholes Our benchmark model and one of the simplest examples of Lévy 
processes and a%ne (jump) di7usion is standard Brownian motion. This is the only 
continuous process from the wide class of Lévy processes. In this sense the classical 
Black–Scholes model can be categorized as a continuous exponential Lévy model. 
The characteristic function for an exponential Brownian motion with instantaneous 

variance 3, is given by 

 D��F	 
 �(�GHE0 ) 
 exp wiÊF� � 3,F,2 �x. (5.10) 

To prevent arbitrage the drift correction parameter Ê must be chosen in a way that 
the discounted price process remains a martingale. By imposing D���i	 
 ���M0� 
1 we $nd that Ê 
 � <, 3,. The analytic continuation of the characteristic function is 

de$ned by the whole complex plane.  
 
Finite Moment Log Stable This Lévy process with in$nite activity was proposed by 
Carr and Wu (2003) to address the observation for S&P 500 index options that the 
volatility skew does not Katten as time to maturity increases. The characteristic 
function is described by 

 D��F	 
 �(�GHE0 ) 
 exp ÉiFÊ� � �iF3	­�sec 6�2 Ë, (5.11) 

where Ê 
 3­sec �­,  is the convexity adjustment term to sustain the martingale 

property. The tail index � � �1, 2� controls the tail behavior and 3 describes the 
width of the risk neutral density. For � 
 2 the Finite Moment Log Stable model 
(FMLS) coincides with the Black–Scholes model, where the Black–Scholes volatility 3Ç/ is related to the dispersion measure for the FMLS model 3â/  via 3Ç/ 
 3â/√2. 
The domain for the strip of regularity �E is restricted to u�U� Q 0. 
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Figure 6: Finite Moment Log Stable model in the complex plane. Left: Real part. Right: Imaginary part. 
Model parameters: � 
 1.6 and 3 
 0.1. 

An intuitive way to illustrate the strip of regularity �E for a given model is to plot the 
characteristic function by the movements of its real and imaginary parts on the plane 
of complex numbers. By varying the state variables and model parameters it is then 
possible to gain some insights on the model inherent dynamics and properties. In 
Figure 6 and Figure 7 this is shown for the FMLS and Heston (1993) model 
respectively for some arbitrarily chosen parameters. 
 
Heston (1993) The Heston dynamics are one of the most prominent stochastic 
volatility speci$cations where the instantaneous variance follows a mean reverting 

square root process. More precisely the instantaneous variance ²� 
 3, is allowed to 
be stochastic and time dependent and as such relaxing the assumption of stationary 
increments. The characteristic function for the Heston (1993) is 

 D��F	 
 �(�GHE0) 
 exp�ä�F	 C å�F	²$�, (5.12) 

where ä�F	 and å�F	 

 ä�F	 
 ®¯3±, æ�� � q	� � 2ln �}��ç� � 1} � 1 �è, (5.13) 

 å�F	 
 � � q3±, � 1 � ��ç�1 � }��ç� �, (5.14) 

with 

 q 
 ��, � 4�~¼, (5.15) 

 } 
 � � q� C q, (5.16) 

and auxiliary variables 

 �~ 
 � 12 F�F C i	, � 
 ® � iF3±°, ¼ 
 12 3±,. (5.17) 
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There is no explicit convexity correction for the di7usion process in this speci$cation, 
instead it is contained in the de$nition of �~. The Heston model belongs to the class of 
a%ne di7usions. These are de$ned in a way that the logarithm of the conditional 
characteristic function for L 
 ln � and ², conditional upon the instantaneous value 
of the stochastic volatility state variable, is a linear function of these state variables. 

The domain for the extended characteristic function is the strip �E given by the 
interval �b�, b�	, where b� Q 0 and b� [ 1 solve [see Lee (2004)] 

 }��ib	�ç��Ge	� 
 1. (5.18) 

For the FMLS model the price process follows a Lévy process which is by de$nition a 
time-homogenous process and hence the analytical strip �E does not depend on the 
number of $nite moments. For the Heston model, however, without stationary 
increments the number of moments is not invariant to the time horizon. The time 
evolution of the characteristic function is plotted in Figure 7 with two di7erent time 
horizons on the Gauss plane. As the time increases the number of moments decrease. 
In other words the singularities move along the imaginary axis toward the real axis 
which in turn narrow increasingly the strip of regularity. This issue is known as the 
moment stability of a%ne stochastic volatility models and is especially important for 
long dated options. For certain circumstances under which the moments of the price 
process can explode (become in$nite) in $nite time, compare e. g. Lord and Kahl 
(2007), Andersen and Piterbarg (2007), Keller-Ressel (2008). 

Although known for some time now, there are still substantial research e7orts 
made to gain a better understanding of this model. For a recent review and some 
lesser known features of the Heston (1993) model see Zeliade Systems (2009). 
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Figure 7: Heston (1993) model in the complex plane. Top: One year to maturity. Bottom: Eight years to 
maturity. Model parameters: ® 
 1, ¯ 
 0.02, ° 
 0, 3± 
 0.4 and ²$ 
 0.02. 

Depending on the valuation formula [e. g. the Carr and Madan (1999) formulation] 
the above speci$ed characteristic functions might have to be rewritten into the form 
of 

 exp�ln �$ C ���D��F	. (5.19) 

Having speci$ed three di7erent model speci$cations we are now ready to explore the 
pricing formulae and density functions using Fourier inversion methods. 
 

5.3 Distribution Functions 

Before considering option pricing applications we will investigate how to recover 
distribution functions from tractable characteristic functions. On one hand this is per 
se an interesting and important topic for applications to statistical inference and on 
the other hand option prices are obtained by integrating a payo7 function according 
to a particular probability density. 
 
Direct Integration 

In this part we will $rst have a glance of some qualitative properties of the di7erent 
quadrature schemes and chosen models. Then the di7erent integration algorithms are 
compared with respect to accuracy and computational e%ciency. 

-1
0 -8

-7

-5

-4

-2

0

1

3

4

6

8 9

0

1

2

3

4

-1
0

-8

-5

-3

0

2

4

7

9

Im(z)

A
b

s(
p

h
iH

e
st

o
n

)

Re(z)

-1
0 -8

-7

-5

-4

-2

0

1

3

4

6

8 9

0

2

4

6

8

-1
0

-8

-5

-3

0

2

4

7

9

Im(z)

A
b

s(
p

h
iH

e
st

o
n

)

Re(z)



 

|   
 

43

 

 
Figure 8: Standard Normal Density function as a function of Legendre points. 

In Figure 8 the density of a Standard Normal random variable is plotted as a function 
of Gauss–Legendre integration points. It can be seen that the center of the density is 
captured quite well by only a few points, however, by simple observation we can see 
that for the tails of the probability function a lot more points are necessary to achieve 
a minimum degree of accuracy. The oscillatory behavior is typical for Gaussian 
quadratures where each quadrature has its own characteristics and purposes, a 
Gauss–Laguerre integration mimics qualitatively the same picture only distinguished 
by a slightly di7erent curvature. 

In order to assess the accuracy of the above mentioned numerical integration 
schemes we begin with the ubiquitous Black–Scholes model as a benchmark to test 
against. Before being interested in high precision results we show some qualitative 
properties of two basic Gaussian quadratures, namely the Legendre and Laguerre 
integration. 
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Figure 9: Black–Scholes density function. Top: Density with time to maturity 0.05 and volatility of 
20 %. Bottom: Absolute error of 64 point Gauss–Legendre and 18 point Gauss–Laguerre integration. 

In the exhibit above the density function for the Black–Scholes model is shown. As 
one can see, the Legendre quadrature has increasingly ‘good’ $t in the tails whereas 
the Laguerre integration shows a better $t in the center of the density. Note the 
di7erence in this example, the Laguerre quadrature with only 18 points shows similar 
quantitative properties in magnitude as the Legendre quadrature with 64 points. This 
indicates that the Gauss–Laguerre scheme seems to cope quite well with this kind of 
problems. Choosing 64 points for the Laguerre nodes result in an absolute error well 
below 1e–12 in the range of [–0.5, 0.5]. To receive the same precision for a simple 
Legendre quadrature more than 170 nodes are required. 
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Figure 10: Black–Scholes probability density function for two di7erent times to maturity and volatility 
of 20 %. Left: Probability density functions. Right: Fourier integrands. 

As previously noted, there is an inverse functional relation between space domain and 
image domain. A steep function in space usually becomes wide in the characteristic 
function, a behavior which becomes apparent by the inspection of typical Fourier 
integrands. For increasing � the return densities become smoother and have fatter 
tails, which lead to thinner tails of the characteristic function making it less well 
behaved. This e7ect will di7er for various price processes depending on their 
decaying behavior towards in$nity. This can lead to serious consequences for 
numerical procedures, which will be discussed in detail later. 
 

 
Figure 11: Black–Scholes cumulative density function for two di7erent times to maturity and volatility 
of 20 %. Left: Cumulative density functions. Right: Fourier integrands. 

In Figure 12 the density function for the FMLS model is illustrated together with the 
corresponding Black–Scholes density and Fourier integrands. For choosing � Q 2 the 
model inherent skewness to the left property is clearly visible and as one can see the 
tail on the left of the density decays slower than the log normal commonly referred to 
as a fat tail. 
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Figure 12: FMLS density and integrand. Left: Density with � 
 0.05, � 
 1.6 and 3 
 0.1 together 
with the corresponding Black–Scholes density. Right: Real and imaginary parts of the FMLS integrand 
for the density approximation. 

In Section 3.2 four di7erent formulae are presented which allow to approximate the 
cumulative density function. These are now compared with respect to convergence 
properties and e%ciency with the help of the Heston (1993) model speci$cation. 
 

 
Figure 13: Integrands in the Heston model with di7erent inversion formulae. Left: Inversion formula 
using the real part [Eq. (3.15)]. Right: Inversion formula using Eq. (3.14). 

From Figure 13 we see the di7erent curves of the integrands employing di7erent 
Inversion formulae. The exhibit on the left shows the integrand using the real part of 
the function evaluation [Eq. (3.15)], using the imaginary part shows exactly the same 
picture [Eq. (3.16)] with the exception that the real and imaginary parts are simply 
interchanged. Using (3.14) the resulting integrands for the real parts pretty much 
resemble the same behavior, only mirrored and slightly di7erent in magnitude. Using 
the composite Gauss–Legendre integration the CPU times with respect to equations 
(3.15) and (3.16) are virtually identical (averaging over 100 density evaluations from –
0.5 up to 0.5 needs 0.035 seconds in CPU time), for (3.14), however, the running time 
nearly doubles which seems logical since with this representation the quadrature has 
to evaluate the characteristic functions two times (0.067 seconds on average). The 
representation as in (3.21) behaves similar to (3.14), but needs only the timings like 
equations (3.15) and (3.16) since the integrand needs to be evaluated only once. 

The number of evaluations of the characteristic function is clearly the 
determining factor and is especially pronounced in the case of the Heston (1993) 
model involving two complex exponentiations (without counting repeating terms), 
one complex logarithm and one complex square root. 

0

5

10

15

20

-20% -10% 0% 10% 20%

FMLS PDF

BS PDF

-0,2

0,0

0,2

0,4

0,6

0,8

1,0

1,2

0 20 40 60 80 100 120 140 160 180 200

real

imag

-12

-10

-8

-6

-4

-2

0

2

-0,006

-0,004

-0,002

0,000

0,002

0,004

0,006

0,008

0 20 40 60 80

real imag

-0,015

-0,010

-0,005

0,000

0,005

0,010

0 20 40 60 80

real

imag



 

|   
 

47

Now we turn to the issue of getting precise values for the desired Fourier 
integrals. The analytic Black–Scholes model serves as a benchmark for the di7erent 
integration methods. As is well known, even for the Black–Scholes model which is 
generally considered analytic or closed form, we need a numerical approximation for 
the required Cumulative Standard Normal Distribution. Following the exposition in 
West (2005) we rely on the therein proposed Hart (1968) algorithm which is accurate 
to double precision throughout the real line. In Figure 14 we summarize the main 
results in terms of the achieved accuracy versus CPU time in seconds. The most 
e%cient algorithms will be located in the left down corner. As a measure for the error 
we take the root mean squared errors (RMSE) resulting from averaging the PDF 
calculations from –0.6 up to 0.6 involving 121 values. For the generation of the Gauss 
nodes and the adaptive Gauss–Kronrod quadrature we use the routines implemented 
in the ALGLIB library3. The adaptive Simpson and Gauss–Lobatto procedures are 
direct implementations of the algorithms described in Gander and Gautschi (2000). 
 

 
Figure 14: Accuracy vs. CPU time. Accuracy measured as root mean squared error (RMSE) in relation 
to the computation time in seconds (CPU time) on a double log-scale.  

For the Gauss–Laguerre and Gauss–Legendre quadratures the number of integration 
points is included, for the composite Gauss–Legendre the number of points per 
subinterval is indicated in conjunction with the corresponding local stopping criteria. 
The adaptive schemes are indicated with the desired tolerance level for the routines 
beginning with 10e–10 upwards. 

Having expected a more regular pattern with downward sloping curves from the 
upper left to the right down corner we see that this behavior is not given in all cases. 

                                                        
3 Available at http://www.alglib.net/ 
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For instance the error arising from the composite schemes should theoretically 
approach zero as the step size Ò tends to zero. One potential reason for this contrary 
and seemingly irregular behavior may be traced back to the increasing number of 
numerical operations which can accumulate to a substantial amount of rounding 
errors working within a $nite precision computation environment. The number of 
signi$cant digits for the nodes and weights for the Gauss quadratures in double 
precision Koating point arithmetic are restricted to 16 digits. Decreasing the step size 
any further will increase the rounding errors dramatically leading to completely 
meaningless results. Using composite Newton–Côtes procedures this e7ect is less 
pronounced (not shown here), since the subintervals are approximated by analytic 
functions. 

Simply increasing the number of integration nodes for the plain Gauss 
quadratures also does not lead automatically to more precise values. This will depend 
heavily on the properties of the used polynomials, i. e. whether the orthogonal 
polynomials are capable to approximate the evaluated function well enough [compare 
Figure 9] and as we can see choosing higher order schemes need not necessarily 
imply higher accuracy. In addition, there are numerical impediments as well, e. g. for 
double precision the highest number of nodes for the Gauss–Laguerre scheme that 
can be generated is 365, otherwise the algorithm will produce an overKow [see e. g. 
Dobránszky (2008)]. 

All considered adaptive procedures perform quite well, as expected the Gaussian 
schemes are far superior to the Simpson rule albeit this routine works remarkably 
well. In terms of computational e%ciency the best overall performance is achieved by 
the adaptive Gauss–Kronrod algorithm, whereas the most precise values are obtained 
with the adaptive Gauss–Lobatto routine.  
 
FFT and FRFT 

The FFT and FRFT are computationally e%cient algorithms for the calculation of 
density functions. In this section we address some implementational issues and assess 
the accuracy with respect to analytical solutions. 

For the PDF inversion we need to discretize the Fourier integral 

 KE�L	 
 16  t(��GHMDE�F	)dF#
$ ,  

 Í 16 Î t(��GHéMDE F�£)ÚÏ�<
�.$ . (5.20) 

where Ú denotes the step size for the summation grid. 
In order to calculate the integral in (5.20) we need to specify the number of 

summands for the integral approximation Ì which should be a power of 2 to use the 
computational e%ciency of the FFT and the size of Ú determining the grid spacing in 
Fourier domain. Both values will determine the e7ective upper bound for the 
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integration b 
 ÌÚ. The FFT returns Ì values of L, where Lh 
 �c C Ûg with grid 

spacing of Û 
 26/ �ÚÌ	 yields the return grid. This implies that the returned values 

are within the range ��c, c	 centered around zero with c 
 ÌÛ/ 2. Further setting F� 
 Úß the PDF $nally becomes 

 KE�Lh	 Í 16 Î t(��Gêë�h�GHé�DE F�£Ú��)Ï�<
�.$ , (5.21) 

where ��  are some weightings implementing the chosen integration rule. Common 

choices are the Trapezoidal rule with integration weights �� 
 <, for ß 
 0 or ß 
 Ì � 1 and 1 otherwise, and the Simpson’s rule weightings �� 
 <n (3 C�1ßC1�1ß where 1� is the Kronecker delta function which is 1 for �
0 and zero 
otherwise. Running a FFT then delivers an approximation of the discretized Fourier 
integral. 

As we know from Section 3.2, the probability density function is an absolutely 
integrable function and does not impose any major impediments in conjunction with 
FFT methods. For the cumulative density functions, however, this is not the case. The 
FFT cannot directly be applied to recover the CDF, since the integrand is singular at 
the required evaluation point F 
 0. In order to circumvent this problem it is possible 
to proceed in exactly the same way as shown in Section 4.4 by damping the function 
by some carefully chosen parameter � in a way that the integrand is well behaved and 
directly applicable for the FFT [see e. g. Kim & al. (2009)]. 

If there is a damping constant � [ 0 such that the characteristic function under 
consideration is absolutely integrable for all complex U with u�U� 
 �, then we are 
able to de$ne a modified CDF 

 r­�L	 
 ��­Ms�I ` L	. (5.22) 

Just like the modi$ed option price we can de$ne a modi$ed characteristic function 

 D­�F	 
 1� � iF DE�iF C �	. (5.23) 

The cumulative density is then given by applying the Fourier inversion to the 
dampened transform and $nally undamping the inverted function 

 r�L	 
 �­M26  ��GHMD­�F	dF#
�# ,  

 
 �­M6  t(��GHMD­�F	)dF#
$ . (5.24) 

Using this representation in conjunction with a discretization scheme as in (5.20) and 
(5.21) we are now able to use the FFT to evaluate the cumulative density function for 
a whole range of values in one single stroke. 
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Figure 15: Damping of the Fourier transform for the cumulative density function. Heston model. Left: 
Damping factor � 
 0.75. Right: Damping factor � 
 2.75. 

Without the damping constant the integrand exhibit divergent behavior around zero 
and is therefore not suited for the FFT. With increasing � the integrand becomes less 
steep and smoother, aiding the numerical quadrature to evaluate the integral precisely 
[see Figure 15]. However, choosing � too big will render the numerical integration 
unstable as well. This relationship is illustrated in Figure 16 by contrasting the FFT 
calculations with the analytical solutions in the Black–Scholes model. As we can see, 
there is a range of values for � delivering quite accurate results and will then slowly 
worsen for � getting bigger. The minimum error in this example is around � 
 1.5. 
 

 
Figure 16: Root mean squared error (RMSE) of FFT cumulative density approximations as a function 
of damping factor � in the Black–Scholes model Ì 
 4096 and Ú 
 0.25.  

Having speci$ed how to distretize the Fourier integrals and how to overcome the 
impediments for the FFT with respect to the cumulative densities, we will now give 
some practical examples. In the following we adapt the example in Chourdakis (2005) 
for densities in the Black–Scholes model with time to maturity 0.25 and 30 % 
volatility. For instance using Ì 
 4096 and Ú 
 0.25 for the FFT we get an output 
spacing of Û 
 0.00614 and an upper integration bound of 1023.75. For the FRFT we 
set the desired output range for the density values to [–0.6, 0.6], for example using Ì 
 128 and Ú 
 0.25 implies an output grid with Û 
 2 ð $.ñ<,ò 
 0.009375 and an 

upper bound of 31.75 (with the restriction imposed by the FFT the output spacing in 
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this case would be Û 
 0.19635). The fractional parameter is determined by � 
 ëê,� 

and results in 0.0078125 for aforementioned parameters. In Table 2 we list the 
resulting errors and corresponding running times for the above mentioned example 
parameters and other combinations of Ì and Ú. 

The error measure is calculated only at grid points belonging to the FFT and 
FRFT sampling grid. Preceding in this way we can avoid interpolation and hence no 
interpolation error will a7ect the results. The results show that the two methods are 
capable of returning very accurate values for the density function compared to 
analytical values. Further, as expected, the runtimes of the FRFT are usually a lot 
faster than the corresponding FFT (using the FFT implementation in the ALGLIB 
library).  

Table 2: Approximation error and timing of FFT vs. FRFT. 

 Ì Ú RMSE CPU time (sec) 

     FFT 2048 0.25 1.667E–14 0.057 

 
2048 0.50 1.166E–14 0.055 

 
4096 0.25 1.667E–14 0.108 

 
4096 0.50 1.167E–14 0.108 

 
8192 0.25 1.821E–14 0.260 

 
8192 0.50 1.276E–14 0.255 

     FRFT 64 0.50 4.070E–06 0.014 

 
64 1.00 9.208E–16 0.014 

 
128 0.25 3.359E–06 0.029 

 
128 0.50 9.813E–16 0.029 

 
128 1.00 1.579E–15 0.029 

 
256 0.25 9.122E–16 0.074 

 
256 0.50 1.551E–15 0.074 

 
256 1.00 2.765E–15 0.073 

          
 
As we have seen it is impossible with the conventional FFT to evaluate the integral in 
(5.24) on a $ne grid and get a $ne resolution for the density values at the same time. 
For example, the FFT for the Black–Scholes density with Ì 
 4096 and Ú 
 0.25 
returns only 107 out of the 4096 values within [–0.6, 0.6]. With respect to the range of 
interest for our illustration, more than 97 % are outside the region of interest. 
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Figure 17: Pattern of absolute error of FFT and FRFT probability density approximations versus 
analytical solution in the Black–Scholes case. Left: FFT Ì 
 4096 and Ú 
 0.25. Right: FRFT Ì 
 128, Ú 
 0.25. 

With the FRFT we have an appealing possibility of breaking the relation between Ú 
and Û and explicitly specifying both the summation grid of the Fourier integral and 
the desired output range. However, both the FFT and FRFT have the limitation that 
the grid points must be chosen equidistantly thus precluding the use of more 
sophisticated integration algorithms like Gaussian quadrature. 

Conducting the same experiments for the cumulative density reveal quite similar 
implications with respect to the choice of FFT or FRFT, though the choice of the 
damping parameter � is critical for either of the two algorithms. 

Findings for the Heston (1993) and FMLS model against direct integration 
methods reveal similar qualitative characteristics, nevertheless an exact quanti$cation 
of the errors is not an easy task since in this case approximations in one form are just 
compared to approximations in another form. 
 

5.4 Option pricing 

In the previous section we implemented a number of numerical integration schemes 
for probability function calculations. Now we proceed and apply the same techniques 
to the described Fourier pricing algorithms. Again we illustrate typical shapes of the 
Fourier integrands, compare their convergence properties, and investigate the impact 
of changing the numerical quadratures with respect to accuracy and running times. 
 
Black–Scholes Style Formula 

Heston (1993) pioneers the use of Fourier inversion methods in option pricing by 
assuming a Black–Scholes like functional form as solution to the valuation problem. 
The di7erence of two probabilities under appropriate changes of measure then yield 
to the theoretical value. In the sequel, we compare this concept with the analytical 
solution of the Black–Scholes formula. In Figure 18 we exemplify some typical shapes 
for the two integrands involved. In the left exhibit, an at-the-money option with zero 
interest rates is shown. We can see a perfect symmetry of the two integrands. The two 
resulting integral values employing inversion formula (3.17) correspond perfectly to 
the Φ�q<	 and Φ�q,	 values in the analytic case with q< 
  0.075 and q, 
  �0.075 
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yielding Φ�0.075 	 
 0.529893 and Φ��0.075 	 
 0.470107 $nally giving 
5.978528811 for both the call and put. 
 

 
Figure 18: Integrands of the Black–Scholes model in the Black–Scholes style formula. Left: � 
 100, � 
 100, � 
 0.25, � 
 0, 3 
 0.3. Right: � 
 80. 

On the right the integrands are displayed with strike 80 corresponding to the risk 
neutral probabilities of $nishing in-the-money with Φ�q<	 
 0.940929 and Φ�q,	 
 0.921117 resulting in 20.403599348 for the call and 0.403599348 for the 
put respectively. 

The functional form expresses the option value as the di7erence of two binaries, 
also referred to as digital options. To be more precise the call value resembles the 
result of subtracting a Cash-or-Nothing call from an Asset-or-Nothing call. We 
exemplify this relation for the FMLS model using the entries in Table 1. The results 
are summarized in Table 3, note that the Cash-or-Nothing call has to be scaled by the 
current strike value. 

Table 3: Call price as the di7erence of an Asset-or-Nothing call and a Cash-or-Nothing call in the 
FMLS model. Model parameters are � 
 � 
 100, � 
 1, � 
 0.05, � 
 1.6 and 3 
 0.1 where the 
contour of integration is chosen along 1.75. 

Asset-or-Nothing 73.085400047 

Cash-or-Nothing ð Strike  63.443665532 

Call 9.641734515 

 
While having the same appealing intuitive properties like in the Black–Scholes case, 
this approach has several de$ciencies with respect to the numerical evaluations of the 
Fourier integrals. The numerical approximation of a Fourier integral will introduce a 
discretization error and a truncation error [compare Section 6] which will double by 
evaluating two integrals. This might be alleviated by considering equation (4.14), 
however, it remains to evaluate the characteristic function for the price dynamics 
twice which is a time critical factor. Another crucial factor are the convergence 
properties of the integrands. From (4.14) and (4.15) likewise it becomes apparent that 
the integrands decay approximately in a linear fashion, whereas all other approaches 
under consideration have a quadratic rate of decay, usually leading to substantial 
savings in computation time. 
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Attari (2004) and Bates (2006) Formulae 

As we know from the approaches developed by Attari (2004) and Bates (2006) it is 
possible to obtain single integration solutions and sharing the cumulative density 
function analogy of the Black–Scholes style formula for $nding option prices. In this 
framework we do not have to specify a speci$c damping factor or contour of 
integration in the complex plane to make the Fourier integrals well behaved which is 
de$nitely simplifying implementational matters. Further, another similarity between 
both formulae is that they share a quadratic term in the denominator exhibiting 
exactly the same advantageous convergence properties compared to the Black–
Scholes like solution. 
 

 
Figure 19: Rate of decay in the Attari (2004) and Bates (2006) valuation formulae in comparison to the 
Black–Scholes like solution. Left: Attari-Bates Integrand. Right: Black–Scholes style integrands. Model 
parameters are chosen as in the right panel of Figure 18. 

The curvatures of the integrands in Figure 19 demonstrate the much faster rate of 
decay of the models with quadratic decay as the frequency variable approaches 
in$nity. 
 
Carr and Madan (1999) and Time Value Formulae 

The Fourier inversion method developed by Carr and Madan (1999) attracted a lot of 
attention mainly due to two reasons. First, it allows to price options for a whole range 
of strikes in one go and secondly it introduces an additional degree of freedom which 
has a deep impact on the curvature of the involved Fourier integrands. This 
additional parameter is not only crucial for the application of the FFT to option 
pricing but as well serves as a scaling factor a7ecting the smoothness of the 
integrands. A well behaved integrand helps the numerical integration schemes 
signi$cantly and hence is indispensable for highly accurate results in this framework. 
Figure 20 gives an example that is based on the Heston (1993) model. As one can see, 
the choice of the damping factor � is an important one. In the left panel the divergent 
behavior around zero is clearly visible and in contrast, the right panel shows a smooth 
behavior of the integrands with reasonable choices for � that allow for a precise 
evaluation of the pricing formula. Many authors have discussed this pricing approach 
in rigorous detail, most notably the works by Lee (2004) extending the approach 
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signi$cantly and providing an error analysis and Lord and Kahl (2007) who give 
detailed instructions on how to chose � to receive ‘very’ high precision values. 
 

 
Figure 20: Damping factor � as scaling parameter. Left: Real and imaginary parts of the Heston call 
value integrand with � 
 0.1. Right: Real and imaginary parts of the Heston call value integrand 
with � 
 1.75 (solid lines) and � 
 2.75 (dashed lines). Model parameters: � 
 � 
 100, � 
 1, � 
 0.05, ® 
 2, ¯ 
 0.01, ° 
 �0.5, 3± 
 0.25 and ²$ 
 0.02. 

In the sequel we focus on some typical observations made within this framework, for 
a deep analysis we refer to the mentioned literature. The interplay between � and the 
resulting function values is visualized in Figure 21. An � near the origin of the call 
formula and an � around one for the put formula show complete meaningless results, 
with increasing � the prices approach the true values (obtained with the adaptive 
Gauss–Kronrod quadrature). As was mentioned in Section 4.4, there is an upper 
bound on � as well which depends on the number of moments of the particular price 
process. 
 

 
Figure 21: Heston values as a function of damping factor �. Left: Call options formula, true price: 
7.504536548. Right: Put options formula, true price: 2.627478999. Model parameters: � 
 � 
 100, � 
 1, � 
 0.05, ® 
 2, ¯ 
 0.01, ° 
 �0.5, 3± 
 0.25 and ²$ 
 0.02. 

The examples illustrated in Figure 22 based on FFT and the fractional Fourier 
transform show typical error patterns emerging from the use of these methods. They 
are only for illustration purposes, a detailed overview comparing these methods and 
assessing their accuracy is given in Chourdakis (2005).  
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Figure 22: Comparison of Black–Scholes call option prices. Left: FFT with Ì 
 4096 and Ú 
 0.25. 
Right: FRFT with Ì 
 128 and Ú 
 0.2 for the strike range 80 – 120. Model parameters: � 
 � 
100, � 
 0.5, � 
 0.04, 3 
 0.2 and damping factor � 
 1.75. 

The second approach considered by Carr and Madan (1999) substracts the intrinsic 
value from the option and thus deals with time values of the option only. This simple 
procedure ensures the square integrability of the valuation function and does not 
require choosing a damping factor. Unfortunately, the function has a sharp peak at g 
 0, in the neighborhood of this peak the FFT has serious problems due to the fact 
that in this area very high frequencies are required to accurately evaluate the 
integrand which are omitted by a Fourier inversion over a $nite range of integration. 
The source of divergence results from the non di7erentiability of the intrinsic value 
around the at-the-money level. Additionally, the original formulation in Carr and 
Madan (1999) creates a discontinuity at g 
 0 which troubles the numerical inversion 
even more. These $ndings can be seen in Figure 23 where the time value function is 
plotted and contrasted to the analytical solution of the Black–Scholes model. A simple 
solution to the discontinuity problem is proposed in McCulloch (2003) [as described 
in Section 4.4].  
 

 
Figure 23: Out-of-the-Money Time Value function and absolute error in the Black–Scholes model. 
FFT with Ì 
 4096 and Ú 
 0.25. Model parameters: � 
 � 
 100, � 
 0.5, � 
 0.04, 3 
 0.2 and 
damping factor � 
 1.75. The blue points indicate where exactly � 
 � or g 
 0, at this point our 
FFT algorithm did not return a value. 

The divergent behavior of the Time Value method can be alleviated by damping the 
very high frequencies by a hyperbolic sine function. An example is given in Figure 24. 
Without damping the extreme frequencies one can observe the highly oscillatory 
curvature of the integrand in the left exhibit. 
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Figure 24: Integrand for the Time Value method. FMLS model with � 
 � 
 100, � 
 0.5, � 
 0.05, � 
 1.6 and 3 
 0.14. 

By introducing a sinh damping function the integrand becomes progressively better 
behaved and hence more suitable for numerical integration schemes. However, for 
choosing the damping factor too big the integrand will get to close to zero and 
inhibits precise evaluation. 

The Time Value method is usually considered as a robust and stable method, but, 
as Borak & al. (2005) note, due to the sharp cusp around the at-the-money level it 
may lead to some undesired numerical artefacts for the resulting volatility smiles. 
 
Lipton (2002) and Lewis (2001) Formulae 

With the introduction of a damping factor Carr and Madan (1999) make a big step to 
numerically highly e%cient pricing algorithms. By multiplying the option price 
function by an exponential function to ensure the integrability of the Fourier 
transform the pricing problem is e7ectively shifted into the complex plane which 
requires the characteristic function to be evaluated in a speci$c domain of the 
complex plane depending on the payo7 function and the particular stochastic 
process. 

From Lewis (2001) we have a clear exposition of the interplay between the 
conditions on the payo7 functions and the price processes made explicit by directly 
applying the Plancherel–Parseval identity to the convolution representation of the 
pricing kernel with the payo7 in Fourier space. By carefully choosing the contour of 
integration along the complex plane and checking for singularities a Kexible pricing 
framework for arbitrary payo7 functions and price processes is established. 
Throughout the paper we illustrate several applications of this framework, for 
instance the binary options in the Black–Scholes section above or the calculations of 
Greeks and the state price density in the following section. Here we examine the 
algorithms for plain European call and put options. 
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Figure 25: E7ect of choosing a contour of integration. Left: Real and imaginary parts of the Heston call 
value integrand with U{ 
 2.5 (solid lines) and U{ 
 4.5 (dashed lines). Right: Real and imaginary parts 
of the Heston put value integrand with U{ 
 �0.25 (solid lines) and U{ 
 �0.75 (dashed lines). Model 
parameters: � 
 100, � 
 80, � 
 1, � 
 0.05, ® 
 2, ¯ 
 0.01, ° 
 �0.5, 3± 
 0.25 and ²$ 
 0.02. 

The graphics shown in Figure 25 depict the valuation formula in Eq. (4.54). In the left 
panel two examples of possible lines of integration along U{ [ 1 are shown, for this 
region the call price function is well de$ned [Call 
 24.119720814]. For the right 
panel two arbitrary values U{ Q 0 are chosen which de$ne the put value function 
[Put 
 0.218074775]. The e7ect of a particular contour of integration with respect to 
the curvature of the integrands is considerable. 

By moving the contour and applying Residual Calculus two alternative 
formulations for the call and put formulae are obtainable. As illustrated in the entry of 
the covered call and cash-secured put in Table 1 the strip of regularity is de$ned for 0 Q u�U� Q 1. This is true for both the call and put formula only distinguished by a 
di7erent resulting residue. The e7ect of specifying a particular line of integration in 
this narrow strip seems to be more sensible than in the previous case. In Figure 26 the 
resulting option values as a function of the contour parameter U{  are contrasted to the 
‘true’ value calculated by the aid of the adaptive Gauss–Kronrod quadrature.  
 

 
Figure 26: Absolute error of the Heston call value as a function of the contour parameter U{. 
As was pointed out in Section 4.5 the choice of U{ 
 <, is not only facilitating 

implementations but ensures accurate results for this particular valuation formula. 
The same observations hold for put value formulation and the Lipton (2002) 
formulae as well as they are equivalent formulations. 
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5.5 Greeks and State Price Densities 

The accurate valuation of $nancial claims is not only the key in $nancial modeling, 
the hedging of these derivative instruments is at least as important. In order to do so 
we need the various sensitivities of the speci$c models with respect to the state 
variables and model parameters commonly referred to as Greeks. Expositions of 
common Greeks in the Black–Scholes style Fourier valuation framework can be 
found e. g. in Schöbel and Zhu (1999), Minenna and Verzella (2008) and including 
some higher order Greeks like Vomma and Charm, Dual Delta or Dual Gamma we 
refer to Reiß and Wystup (2001). A detailed description, possible uses and pitfalls of 
these higher order Greeks in a Black–Scholes world may be found in a series of papers 
from Haug (2003a, b). All these Greeks may be obtained by using simple and 
straightforward $nite di7erences schemes, however, in case that the characteristic 
function is known these are directly available in an analytical form just like the 
derivatives prices or density functions. An exposition of the derivation of Greeks in 
the single integral solutions is relatively rare yet, therefore we present some arbitrarily 
chosen hedge parameters in these frameworks. 

In the Carr and Madan (1999) approach the hedge ratio Delta Δ is given as 
follows 

 Δ 
 +�+�, (5.25) 

 
 ++� æ��­h6  t w��GHh ��
�D��F � �� C 1	i	�, C � � F, C i�2� C 1	Fx#
$ dFè,  

 
 ��­h6  t «��GHh ��
� +D��F � �� C 1	i	+��, C � � F, C i�2� C 1	F¬#
$ dF.  

Calculating the partial derivative we get 

 +D��F � �� C 1	i	+� 
 D��F � �� C 1	i	�� C 1 C iF	� . (5.26) 

Hence yielding 

 Δ 
 ��­h�6  t w��GHh ��
�D��F � �� C 1	i	�� C 1 C iF	�, C � � F, C i�2� C 1	F x#
$ dF, (5.27) 

which may be further simpli$ed to [compare Eq. (4.36)] 

 Δ 
 ��­h�6  t w��GHh ��
�D��F � �� C 1	i	� C iF x#
$ dF. (5.28) 

The Gamma Γ of an option is given by the second derivative of the option with 
respect to the underlying 
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 Γ 
 +Δ+� 
 +Δ+L +L+�, (5.29) 

 
 ��­h�,6  t(��GHh��
�D��F � �� C 1	i	)#
$ dF. (5.30) 

The Delta and Gamma Greeks shown above in addition to the sensitivity Rho are 
model free in the sense that they do not rely on the particular characteristic function. 
If we are interested in calculating the Vega õ for example, we have to di7erentiate the 
characteristic function with respect to the model parameter describing the volatility 
or variance which will be evidently model dependent. Even more involved is the 
situation for Theta, i. e. the sensitivity with respect to the time to maturity, the time is 
a relevant factor for both the general valuation formula and the particular 
characteristic functions conditional upon the current time state. For the Heston 
(1993) model Greeks are illustrated in detail e. g. in Nagel (2001) and Reiß and 
Wystup (2001) and will not be repeated here. 

In the following we will illustrate the concepts within the Lipton–Lewis valuation 
framework and work out a number of Greeks for the FMLS model. Recalling (4.61) 
and di7erentiating yields for the Delta 

 Δ 
 1 � ���
��6  t Å¥iF C 12¦ �:GH�<,?hD� ¥F � i2¦Æ dFF, C 14
#

$ , (5.31) 

and 

 Γ 
 ���
��,6  t Å�:GH�<,?hD� ¥F � i2¦Æ dF#
$ , (5.32) 

for the Gamma. The general form for Vega is given by 

 õ 
 +�+²$ 
 � ���
�6  t «�:GH�<,?h +D� :F � i2?+²$ ¬ dFF, C 14
#

$ , (5.33) 

where ²$ denotes the variance or volatility depending on the particular model. 
Considering the FMLS model we do not have either of the two for � Q 2, but we have 
the scale parameter 3 governing the width of the distribution. Di7erentiating the 
characteristic function of the FMLS process with respect to 3 results in 

 +exp É� :iF3­sec 6�2 � �iF3	­sec 6�2 ?Ë+3  
(5.34) 

 
 � ©iF3­α sec 6�23 � �iF3	­α sec 6�23 ª  



 

|   
 

61

 ð exp É� :iF3­sec 6�2 � �iF3	­sec 6�2 ?Ë.  

For Rho the calculation yields 

 
+�+� 
 � ���
�6 � t Å¥iF C 12¦ ��:GH�<,?hD� ¥F � i2¦Æ dFF, C 14

#
$  

(5.35) 

 ��  t Å�:GH�<,?hD� ¥F � i2¦Æ dFF, C 14
#

$ �. 
To complete the $rst order Greeks Theta reads 

 
+�+� 
 ���
�6 � t�÷¥iF C 12¦ � C D� :F � i2?� ø#

$  

(5.36) 
 ð �:GH�<,?hD� ¥F � i2¦� dFF, C 14 

 ��  t Å�:GH�<,?hD� ¥F � i2¦Æ dFF, C 14
#

$ �. 
Higher order Greeks can be derived in exactly the same manner by further 
di7erentiating the $rst order Greeks. For illustration purposes we arbitrarily pick up 
three higher order Greeks. 

Firstly we consider the DdeltaDtime, Charm or Delta Bleed which is the Delta’s 
sensitivity to changes in time. The DdeltaDtime Greek indicates of what happens with 
the option’s Delta when maturity comes closer. It is de$ned as 

 � +∆z+� 
 � ���
��6 � t�¥iF C 12¦ ÷¥iF C 12¦ � C D� :F � i2?� ø#
$  

(5.37) 
 ð �:GH�<,?hD� ¥F � i2¦� dFF, C 14 

 ��  t Å�:GH�<,?hD� ¥F � i2¦Æ dFF, C 14
#

$ �. 
Secondly, the DgammaDvol, also known as Zomma, is the sensitivity of Gamma with 
respect to changes in volatility or variance 
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+Γ+²$ 
 ���
��,6  t «�:GH�<,?h +D� :F � i2?+²$ ¬ dF#

$ . (5.38) 

Thirdly, the DvegaDvol, Vomma or also known as Vega convexity or Volga, is the 
sensitivity of the Vega to changes in volatility or variance 

 
+,�+²$, 
 +õ+²$. (5.39) 

For the FMLS model taking the second derivative of the option gives 

 +õ+²$ 
 � ���
�6  t�� iF3­�, sec 6�23, � iF3­� sec 6�23,
#

$  

(5.40) 

 � �iF3	­�, sec 6�23, C �iF3	­� sec 6�23,  

 ð �:GH�<,?h��:GH=úsec�­, ��GH=	úsec�­, ? 

 C�, ©iF3­α sec 6�23 � �iF3	­α sec 6�23 ª,
 

 ð �:GH�<,?h��:GH=úsec�­, ��GH=	úsec�­, ?� dFF, C 14. 
For expository purposes, we give a numerical example for the FMLS model and 
summarize the resulting Greeks in Table 4. 
 
Other Greeks can be derived in a similar way, however, depending on the particular 
characteristic function these may result in quite lengthy expressions. We can see that 
many terms appear repeatedly, so we can temporarily store intermediate results which 
will simplify the implementation and can reduce computation time signi$cantly. The 
implications in terms of computational e%ciency and accuracy are practically 
identical to the observations made throughout the paper. 
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Table 4: Greeks for the Finite Moment Log Stable model. FMLS model with � 
 � 
 100, � 
 0.5, � 
 0.05, � 
 1.8 and 3 
 0.11. The $rst entry for each item is for the call while the second is for the 
put respectively. 

          
Call 5.952366338 

   Put 3.483357541 
   

     Delta 0.653499430 
 

Rho 29.698788334 

 
–0.346500570 

  
–19.066707268 

     Gamma 0.033587476 
 

Charm 0.092109339 

 
0.033587476 

 
DdeltaDtime –0.092109339 

     Vega 38.456732518 
 

Zomma –0.265054082 

 
38.456732518 

 
DgammaDvol –0.265054082 

     Theta –7.670146141 
 

Vomma / Volga –0.715079076 

 
–2.793596581 

 
DvegaDvol –0.715079076 

          
 
 
On several occasions we already pointed out the great importance of the concept and 
usefulness of Arrow–Debreu prices, or state price densities respectively, with respect 
to the fundamental risk neutral valuation principle and Fourier pricing alike. At this 
point we present a graphical illustration to emphasize these important theoretical 
underpinnings. 

For this purpose we employ the Fourier transform of an Arrow–Debreu security 
as is shown in Table 1. The state price density or discounted risk neutral density 
[compare Eq. (2.3)] then results from an in$nite collection of those Arrow–Debreu 
securities as in Figure 27. 

Formally this reads 

 1��M � �	 
 ��
�6  ��G� �89 /;�
�	D���U	�G�dUG���#
$�# , (5.41) 

 
 ��
�6  ��G� �89/;% �
�	D���U	dUG���#
G���$ . (5.42) 
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Figure 27: Continuum of Arrow–Debreu securities and risk neutral density (RND) in the Heston 
model. Model parameters: � 
 100, � 
 1, � 
 0.05, ® 
 2, ¯ 
 0.01, ° 
 �0.5, 3± 
 0.25 and ²$ 
 0.02. 

As we can see summing up these ‘Dirac spikes’ representing the prices of a claim with 
a delta function payo7 at in$nitlely small increments depict a well formed density. 
 

5.6 Concluding Remarks and Further Results from the Literature 

The major computational workload for all discussed methods is determined by the 
number of evaluations of the characteristic function. Driving factor for the number of 
evaluations needed to obtain a given level of accuracy are the convergence properties 
of the particular methodology. For option pricing applications the Black–Scholes like 
valuation formula and variants hereof fail the requirement of su%ciently fast decaying 
integrands in comparison to the other methods which all decay much faster due to a 
quadratic term in the denominator. The models evaluating the Fourier integrals on a 
particular contour of integration in the complex plane additionally o7er a $ne tuning 
parameter a7ecting convergence rates which, if chosen carefully, is able to provide a 
good compromise between speed and accuracy. 

All conducted numerical experiments are based on straightforward 
implementations of the algorithms without any (intended) optimizations. The CPU-
time requirements for the calculations depend on many factors like CPU clock or 
used programming language and thus the displayed times should be viewed more in a 
relative sense. In order to increase the computational e%ciency of the Gauss 
quadratures the nodes and weights can be pre-calculated and stored for later use 
(which is done for the composite Gauss quadratures). Furthermore, we strongly 
recommend to always use the highest precision available for the particular quadrature 
nodes, in the literature abscissas and weights are often tabulated for less than double 
precision which can deteriorate numerical results signi$cantly4. 

                                                        
4 High-precision abscissas and weights tabulated up to 100 nodes and C/C++ source code for the 

Gauss–Legendre quadrature are available at http://www.holoborodko.com/pavel/?page_id=679 
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An important topic to pay attention to is that the implementation of 
characteristic functions might require the evaluation of complex logarithms as is the 
case in Heston’s formula [see e. g. Mikhailov and Nögel (2003)]. These are multivalued 
functions which can introduce discontinuities while evaluating the speci$c integrands 
and lead to meaningless option prices. This phenomena was $rst pointed out by 
Schöbel and Zhu (1999) and was tackled since then by several authors, amongst 
others, Kahl and Jäckel (2006), Lord and Kahl (2008), Fahrner (2007) or Guo and 
Hung (2007). For our studies we used the ‘formulation 2’ of the characteristic function 
described in e. g. Albrecher & al. (2006) or Gatheral (2006). 

The calculation of option prices and density approximations by the various 
numerical algorithms lead to di7erent types of errors. By imposing an upper 
integration limit with a $nite number may result in a truncation error [see Section 
6.4]. Evaluating the integrand only at a limited number of points introduces sampling 
errors and for FFT based methods interpolation errors arise from the fact that these 
algorithms return values only on an equidistant grid [compare Section 6.2]. Another 
source of error are roundo7 errors introduced by inexact computer arithmetic. 

In the literature on characteristic function calculus a number of possibilities are 
developed to control these errors. Providing error bounds for the numerical inversion 
of characteristic functions is a crucial ingredient for this task [see e. g. Hughett 
(1998)]. The results from Probability Theory have been amended to option pricing 
purposes by considering option prices as normalized probability functions. For 
example, Pan (2002) builds upon the results from Davies (1973) to provide an error 
analysis to target pricing errors. Another thorough error analysis framework and 
error minimizing algorithms are presented in Lee (2004). 

Numerical integration schemes and FFT algorithms are subject to ongoing active 
research e7orts. These improvements will surely a7ect applications in $nancial 
modeling as well. One example is the work from Minenna and Verzella (2007) who 
apply non uniform FFT algorithms which allow for non uniform sampling of the 
characteristic function and employ Gaussian quadratures by interpolating an 
oversampled FFT to the pricing of options. 
 

6 Numerical Issues and Possible Re@nements to the Inverse 

Fourier Methods 

The focus of this section lies on implementational issues and practical details. 
Computational performance and complexity are extremely important in density 
calculations and pricing. We investigate di7erent approaches that have positive e7ects 
on computational speed and can help to stabilize Fourier inversion methods. 
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6.1 Inversion of the Option minus the Black–Scholes Approximation  

In order to compute option prices Tankov (2009) presents a slightly di7erent 
formulation of the Time Value method proposed in Carr and Madan (1999) and Cont 
and Tankov (2004). The pricing problem is de$ned by the Fourier transform of the 
time value of the option 

 U��g	 
 ����M � �h	�� � ��M � �h	�. (6.1) 

Then the Fourier transform of the time value of a call option, assuming an adjusted 

log strike g 
 ln %���0/; , is given by 

 û��F	 
  �GHh#
�# U��g	dg 
 D��F � i	 � 1iF�iF C 1	 . (6.2) 

Finally, the option prices result by inverting the Fourier transform 

 ���$, �, �	 
 ��$ � ���
�	� C �$6  ��GHhû��F	dF#
$ . (6.3) 

As was already noted by Carr and Madan (1999) the time value method may result in 
a very wide and potential oscillatory Fourier transform with a poor convergence rate. 
Cont and Tankov (2004) argue this is due to the non smooth behavior of the time 
value, which is a non di7erentiable function, causing the Fourier transform to decay 
too slowly at in$nity. This numerically challenging problem can be reduced severely 
by subtracting an analytically integrable complementary function from the original 
integrand. Proceeding this way, a methodology described in e. g. Manno (1988), will 
reduce the underlying curvature of the function to be integrated. The integration of 
the now better behaved composite function can then be evaluated with standard 
numerical quadratures and will most likely improve resulting accuracy. 

In the context of option pricing this simple method was $rst considered by 
Andersen and Andreasen (2000), who use the Black–Scholes model as a control 
variate to stabilize the numerical Fourier inversion. The Black–Scholes model is a 
smooth function of the strike and makes the modi$ed option prices di7erentiable. 
The characteristic function from the Gaussian will be subtracted from the original 
integrand and the Black–Scholes prices will be added afterwards [see Tankov (2009)] 

 Ũ��g	 
 ����M � �h	�� � 1� iÇ/= �g	, (6.4) 

leading to 

 û'��F	 
  �GHh#
�# Ũ��g	dg 
 D��F � i	 � D�=�F � i	iF�iF C 1	 , (6.5) 

where D�=�F	 
 exp É� =ýþ>, ��F, C iF	Ë and eventually inverting yields to 
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 ���$, �, �	 
 �Ç/= ��$, �, �	 C �$6  ��GHhû'��F	dF#
$ . (6.6) 

For this approach to work well we need to know an appropriate volatility level of the 
Black–Scholes model. One way to approximate the standard deviation of the 
particular price process in question is proposed in O’Sullivan (2005) 

 3Ç/ 
 � *� +, DE�F	+F, -H.$ C ¥*+ DE�F	+F �H.$¦,, (6.7) 

which can be simpli$ed to 

 3Ç/ 
 ���t�D����0	�	 � �u�D�� �0	�	,. (6.8) 

The standard deviation can now be calculated either analytically or by a simple $nite 
di7erence scheme, for example Dobránszky (2009) opts to numerically approximate 
the derivatives with eps=1e–5. 

Another possibility to approximate the wanted 3Ç/ is to determine the 
corresponding cumulants ih of the distribution as is shown in Fang and Oosterlee 
(2008). While i, corresponds to the second moment Fang and Oosterlee (2008) 
recommend to include the fourth cumulant ip (or even iñ	 as well since especially for 
short time to maturities the Levy processes might exhibit sharp peaks and fat tails, 
which may be accounted for by inclusion of higher order cumulants 

 3Ç/ 
 �i, C �ip. (6.9) 

Cumulants for the Heston model and some popular Lévy processes can be found in 
the appendix, Table 11 from Fang and Oosterlee (2008). For the FMLS model there 
does not exist a second moment for � Q 2, hence the second (real valued) cumulant 
does not exist either. In this case the numerical approximation seems to be the only 
reasonable choice (twice di7erentiation results in a complex valued cumulant as a 
function of the frequency variable). 

All methods work well and do not impose any numerical impediments, however, 
depending on the characteristic function, the analytical expressions may become 
quite large, which in turn would favor the numerical approximation. While accurate 
approximations of the standard deviations lead to optimized Fourier inversion, even 
an ad hoc choice for 3Ç/ like 0.1 or 0.2 will improve convergence signi$cantly. On a 
side note we emphasize the fact that the obtained values for 3Ç/ describe the standard 
deviation of the stochastic process and do not necessarily have to coincide with 
concepts like implied volatility. 
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Figure 28: Control variate for the FMLS model in the Lipton–Lewis framework. FMLS model 
parameter: � 
 � 
 100, � 
 0.5, � 
 0.05, � 
 1.8 and 3 
 0.1. The solid lines depict the FMLS 
integrand and the dashed lines result for the Black–Scholes integrand based on the standard deviation 
given by 31.62 % for the FMLS process (imaginary parts are denoted on the right scale). The implied 
volatility for the model parameter with call price 5.567831374 is given by 15.15 %. 

The use of Black–Scholes control variates is applicable to all the mentioned valuation 
formulae presented in this text [see e. g. Dobránszky (2009) for the Lipton–Lewis 
formula and Figure 28]. The use of the Black–Scholes model not only improves 
numerical evaluations of the Fourier integrals, it further allows a thorough error 
control in a valuation framework [see Tankov (2004)]. Other control variates are 
conceivable if the characteristic functions of both models were close, which, however, 
will unlikely be the case since ‘analytical’ solutions to other sophisticated price 
dynamics typically involve in$nite summation or special functions. 

Without going into detail the same method works for density approximations as 
well. An example in given in Jaschke and Jiang (2002) for the approximation for the 
cumulative density function 

 r�L	 � Φ�L; �, 3	 
 12 � 126  ��GHMiF �DE�F	 � ��GH��=>H>, � dF#
�# . (6.10) 

Applying the inverse Fourier transform to r�L	 � Φ�L; �, 3	 mitigates the problem 
that the integrand has a pole at zero. Alternatives to the normal distribution may be 
more appropriate to the problem at hand provided they have analytical densities and 
corresponding Fourier transforms. 
 

6.2 Interpolation Issues 

One fundamental property of conventional FFT and FRFT methods is that the 
resulting values are located on an equally spaced output grid. Quite probably not all 
desired values will exactly agree on this equidistant grid, calling for some 
interpolation methods to $nd the intermediate values. This is vitally important for 
density calculations where the desired L-values are irregularly spaced and for option 
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prices which will be equally spaced on a log strike grid whereas options listed on the 
markets are usually denoted on a strike level, not the log strike level. 

In the literature the authors often regard simple linear interpolation as an 
adequate algorithm yielding su%ciently accurate results. The main reasons are the 
additional computational workload or the argument that choosing the discretization 
su%ciently small, the interpolation error will be negligible. Exceptions are e. g. 
McCulloch (2003) or Chourdakis (2005) in the context of option pricing and Menn 
and Rachev (2006) for density approximations. McCulloch (2003) argues that simple 
linear interpolation may give an interpolation error in excess of the Fourier inversion 
computational error due to the convexity of the pricing function. Instead the use of 
cubic spline interpolation is favored for the call and put formulae which are capable to 
capture the curvature of the functions. These implications are exhibited in Figure 29 
where the respective pricing errors of the two methods are displayed for a range of 
option values. 
 

 
Figure 29: Linear vs. cubic spline interpolation for option pricing. Relative errors for FFT call option 
pricing in the Black–Scholes model with Ì 
 256, Ú 
 0.5, � 
 1.75. Model parameters: � 
 � 
100, � 
 0.25, � 
 0.04, 3 
 0.3. 

In comparison to the linear interpolation the cubic spline method is much more 
accurate in error terms. If computation time is critical one might use this result to 
reduce the number of summation points Ì and instead optimize the number of 
discretization points in Fourier space to obtain a characteristic function evaluated on 
a $ne grid. 

In numerical experiments Menn and Rachev (2006) con$rm that cubic splines 
o7er much better overall performance than linear interpolation with respect to 
density calculations. Whereas linear interpolation error is negligible in the tails where 
the curvature almost vanishes it will have a signi$cant impact in the center of the 
distribution around the mode [see Figure 30]. Further Menn and Rachev (2006) are 
able to approximate an error estimate of the cubic spline interpolation quantitatively 
for �-stable distributions. 
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Figure 30: Linear vs. cubic spline interpolation for density approximations. Absolute error for FFT 
density approximations with in the Black–Scholes model with Ì 
 256, Ú 
 0.5. 

Without saying other interpolation schemes will work perfectly well depending on 
the particular problem. One choice would be e. g. to consider a convex interpolation 
for option prices since this is a convex function of the strike [compare e. g. Hagan and 
West (2006)]. 

To summarize we can state that the potential increase in runtime using more 
sophisticated interpolation algorithms is in many cases justi$ed by a potentially 
substantial improvement in accuracy. 
 

6.3 Caching Technique 

The FFT valuation framework along the lines of Carr and Madan (1999) is usually 
considered as the de facto standard for the fast pricing for a series of option prices. 
This is because the FFT, like the FRFT, is able to deliver outputs for a whole range of 
di7erent strike levels in one go. Though, the simultaneous calculation for a given set 
of strikes is not restricted to the FFT or FRFT methods. For instance, in Bates (1996) 
the simple observation was made, that the values of the characteristic function for 
given model parameters do not depend on a particular strike level. Thus, it is possible 
to compute these values once, store them in a cache and reuse as desired for any 
strike. For a detailed discussion of this caching technique we refer to Kilin (2007) 
where this algorithm is contrasted to the FFT and FRFT methods using a number of 
a%ne (jump) di7usions and time changed Lévy processes. Using the Attari (2004) 
pricing algorithm [compare Section 4.2] for the direct integration method and 
conducting some calibration exercises with all three methods the author is able to 
show that the caching technique is orders of magnitude faster than FFT and FRFT. 

An important aspect to note is that the caching technique can be used in 
conjunction with a whole range of sophisticated integration schemes like Gaussian 
quadratures. Therefore, the integration algorithm is not restricted to equally spaced 
grid points as is the case for the FFT and FRFT. 

The same technique works for density approximations as well. The values for 
arbitrary L-values are not related to the evaluations of the characteristic function for 
speci$c model parameters. This makes the method a viable tool for computationally 
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intensive density calculations without the need for FFT methods and regularly spaced 
grid points. 

In conclusion, the caching technique is a perfect candidate for tasks where the 
computational workload is high like calibration to market prices, calculations of 
corresponding hedge parameters or volatility surface and portfolio simulations. 
 

6.4 Transforming the Domain of Integration 

In theory all the considered Fourier integrals so far are continuous Fourier integrals, 
i. e. are de$ned continuously from minus in$nity or zero to plus in$nity. In practice 
though, we usually have to evaluate these integrals numerically. This implies that we 
have to discretize the integral in some form for summation and, further, have to 
truncate the in$nite or semi in$nite integral to a $nite one (apart from the Gauss–
Laguerre quadrature). For the discretization we have discussed a number of 
possibilities, now we consider potential ways of how to truncate the integration 
domain. 

A very elegant way is to determine the asymptotics for the characteristic 
functions letting the frequency variable approach in$nity. This is done for some 
popular price dynamics like Heston (1993), Schöbel and Zhu (1999) and the Black 
and Scholes (1973) model in Lord and Kahl (2007). They then evaluate the 
transformed integration domain by applying an adaptive Gauss–Lobatto quadrature. 
This way highly accurate derivative prices are achievable, but not in all cases it is 
possible to transform the domain of integration analytically. 

Alternatively Chourdakis (2005) outlines a numerical method based on the fact 
that the absolute real and imaginary parts of the characteristic function DE�F	 are 
less or equal than its modulus 

 |t�DE�F	�| ` |DE�F	|, 
(6.11) 

 |u�DE�F	�| ` |DE�F	|. 
As we know from Section 3.1 the characteristic function equals zero at in$nity, that is 
we may regard the characteristic function as zero in a numerical sense for large F. 
Using these facts we may then use the modulus of the characteristic function to $nd a 
critical F�eM such that 

 |DE�F�eM	| ` 10�� , (6.12) 

where à denotes the desired precision level. Usually simple integer search methods 
will su%ce for practical tasks avoiding the need for computationally intensive solver 
methods. Due to the oscillatory nature of Fourier integrals it may be theoretically 
possible that there is a contribution of the characteristic function beyond the 
determined truncation point, which nevertheless imposed no problems during made 
numerical experiments. 
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Instead of determining an upper integration limit a priori an alternative is to let 
the numerical quadrature chose an upper truncation point adaptively. For instance, 
the composite Gauss–Legendre quadrature [Eq. (5.3)] is predestined for this 
procedure which is proposed in e. g. Sepp (2003) or Yan and Hanson (2006) and 
which we use intensively throughout the paper. The number of summations Ì of the 
sub-intervals each evaluated by a Gauss–Legendre quadrature is determined by a 
local stopping criterion. Sepp (2003) recommends to stop the integration if the 
contribution of the last strip becomes less than 10e–12 with a step size Ò 
 1 for the 
single integral solutions and Ò 
 10 for the Black–Scholes style valuation formula, 
whereas Yan and Hanson (2006) stop the integration if the ratio of the contribution of 
the last strip to the total integration becomes smaller than 0.5e–7 and consider Ò 
 5 
as a good compromise between speed and accuracy for the Black–Scholes like 
formula.  

In Lewis (2000) an approximation for an upper truncation level F�eM is provided 
in the example code on p 68 for the Heston (1993) model 

 F�eM 
 max w1000, Ð�²$�x, (6.13) 

where Ð is set to 10 in this particular case. This ‘dimensionless’ relation reKects the 
inverse dependency of the integrand on the time to maturity, a property we have seen 
in the manifold graphical illustrations of various integrands [compare also to Section 
6.5]. For other models and pricing algorithms other choices for Ð and 1000 may be 
more appropriate and should be tested thoroughly. Ð can be roughly interpreted as 
the number of standard deviations for the particular price process in view, which 
means, the heavier the tails of a distribution the bigger Ð should be. Whereas for a 
thin tailed Black–Scholes model a value of say 5 is usually more than su%cient, 10 or 
even more seems appropriate for stochastic volatility and jump processes. 

A similar procedure again for the Heston (1993) model together with the Attari 
(2004) algorithm is presented in Staunton (2006) 

 F�eM  
  �Ð ln 0.0001√� , (6.14) 

where Ð is set to 10 as well. This formulation also respects the fact that the integrand 
depends inversely on the time to maturity, but does the scaling without a speci$c 
volatility or variance amendment. 

There are a number of possibilities to $nd an upper integration point, which is 
de$nitely an important implementational issue to ensure accurate results. Simply 
making some ad hoc choices about the truncation levels should be avoided at all costs. 
This might work just $ne for some circumstances, but inherits the risk that a 
signi$cant part of the integrand is missed leading to meaningless results or that there 
is virtually no contribution to the $nal result rendering the procedure quite ine%cient 
and random. 
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Since we deal with integrals on a semi-in$nite domain, another possibility would 
be the use of Gauss–Laguerre quadratures not caring about truncation altogether. A 
reasonable procedure would be to choose a Laguerre quadrature with a high degree, 
say like Ì 
 128, store the nodes and weights and stop integration when the 
contribution of the last strip becomes smaller than a prede$ned tolerance level. This 
would reduce the numerical complexity for relatively well behaved functions, but 
inherits the risk of not being su%ciently determined especially for short expiration 
dates and is not appropriate for highly oscillatory integrands and thus should be 
employed only with precaution. 
 

6.5 Transforming the Fourier Integrands 

The relevant domain of integration may vary quite signi$cantly depending on the 
model parameters and more importantly the remaining time to maturity. In Nagel 
(2001) the author is outlining a standardizing procedure to transform the Fourier 
integrals which will narrow the di7erences with respect to the meaningful integration 
regions. The integrands are normalized by the standard deviation of the return 
process on maturity. The author illustrates the procedure for the Black–Scholes like 
valuation formula; here we will adapt this method to the single integral solutions. 
Considering for instance the Lewis (2001) approach we substitute the Fourier variable F with the scaled version F � F�¿ç 
 H�±;�, where ²$ denotes the instantaneous 

variance of the price dynamics. Applying the transformation to (4.57) the modi$ed 
version with F�¿ç then reads 

 ���$, �, �	 
 �$ � 4√����
�/ ,6  

(6.15) 

 ð _ t É�GH	
�hD� :F�¿ç � i2?Ë dF1 C F�¿ç,#$ �²$� , 
where we $nally have to rescale the resulting integral to obtain the desired option 
prices. The concept works equally $ne for the other presented pricing algorithms as 
well. The standard deviation of the distribution function can be computed via explicit 
calculation of the second moment or corresponding cumulant respectively or by 
approximating the standard deviation with $nite di7erences as in Section 6.1. 

The impact from this moment scaling procedure results in a drastically reduced 
length of the needed integration range and a much less pronounced sensitivity to the 
maturity. These implications are illustrated below for the Heston (1993) model. 
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Figure 31: Impact of transforming the Fourier integrands. Left: Integrand with a standard numerical 
integration. Right: Slope with normalized integrands.  

Using the transformation procedure allows applying the numerical quadrature on a 
prede$ned integration interval and therefore is potentially able to ease the numerical 
implementation. However, in this case a much $ner resolution of the quadrature is 
needed to obtain su%ciently accurate results in comparison to the standard algorithm 
without the modi$cation. 
 

6.6 Log Spacing 

To minimize computation one would like to have the lowest number of sampling 
points possible. In the context of Fourier inversion from image domain to space 
domain we can exploit the knowledge that the function to be integrated usually will 
exhibit a general decline in amplitude with increasing transform variable. Instead of 
sampling as often at low frequencies as at high frequencies, it seems reasonable to 
evaluate the integrand less frequently at higher frequencies. 

In the following we adopt an idea from Meisel (1968) and implement an 
integration scheme in which the sampling intervals increase on a logarithmic scale. 
The characteristic function is then evaluated using unequally sampled intervals, 
where the intervals are equally spaced on a logarithmic scale. For this purpose we 
apply a simple procedure similar to the logspace function found in many standard 
numerical packages5 and amend it to ensure it starts at zero. At least we have to 
specify a starting and $nal value of the sequence and the number of samples to 
generate. Further possibilities are to decide whether or not to include the last sample 
or to de$ne the base of the log space (which usually is base 10 by default). 
 

                                                        
5 See e. g. http://docs.scipy.org/doc/numpy/reference/generated/numpy.logspace.html 
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Figure 32: Sampling intervals on a log scale in comparison to adaptively sampled intervals. Log 
spacing parameter with starting value b 
 0, $nal value c 
 10 and number of steps 
 100. Heston 
model parameter: � 
 � 
 100, � 
 0.5, � 
 0.05, ® 
 2, ¯ 
 0.01, ° 
 �0.5, 3± 
 0.1 and ²$ 
 0.02.  

In conjunction with the composite Gauss–Legendre quadrature using an adaptive 
upper integration limit we are able to compute the Heston call price accurate up to at 
least 13 digits over the full strike range from 50 to 150 in comparison to the adaptive 
Gauss–Kronrod quadrature with a chosen tolerance level of 1e–15 for the given 
example in Figure 32. 

Table 5: Timings for di7erent quadrature schemes. CPU time in seconds averaging over 100 call price 
calculations with strikes ranging from 51 to 150 (Heston calls with parameters as in Figure 32). For all 
routines the tolerance level is set to 1e–15.  

Quadrature CPU time (sec) 

  adaptive Simpson 0.09266 

adaptive Gauss–Lobatto 0.08451 

adaptive Gauss–Kronrod 0.01797 

composite Gauss–Legendre 0.04123 

log spacing 0.00849 
    

 
The time needed for this operation is only a negligible fraction of the time the 
adaptive procedure takes. In Table 5 the log spacing procedure is compared to other 
numerical quadratures as well. The time di7erences are quite remarkable and suggest 
that this approach is a very powerful method to help improve the numerical 
evaluation of Fourier integrals in terms of accuracy and in minimizing computation 
time. 

Combining the log spacing technique with the caching technique gave the fastest 
density approximations and pricing for a set of options along the strike and time 
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dimension in comparison to all the other mentioned methods during numerical 
experiments. 
 

7 Conclusion 

Financial modeling in the area of option pricing involves detailed knowledge about 
stochastic processes describing the asset payo7s. For sophisticated price dynamics 
these are most conveniently characterized through functions in Image space. By a 
mapping of the probability function from spatial domain to the unit circle in the 
complex plane, expected values of a future payo7 are then available in the form of an 
integral representation. With Fourier inversion methods these integral transforms 
allow the pricing for a whole range of possible payo7 structures. 

In this work we outline general features of Fourier transform techniques 
applicable to both the modeling of density functions and option pricing. Further we 
describe a number of modeling alternatives and accentuate on the similarities and 
subtleties of the di7erent frameworks. Then we present several commonly used 
numerical quadratures to evaluate the integral representations and exemplify their 
use to density approximations and derivatives pricing. Finally, we present ‘best 
practices’ on how the quantitative modeling of the Fourier techniques may be 
improved by considering implementational issues, methodological aspects and 
computational performance. 

The Fourier pricing techniques and Fourier inversion methods for density 
calculations add a versatile tool to the set of advanced techniques for pricing and 
management of $nancial derivatives. 
 
 

References 

Abate, S. and W. Whitt (1992) The Fourier-series method for inverting transforms of 
probability distributions, Queueing Systems: Theory and Applications 10(1–2), 
5–88. 

 
Agliardi, R. (2009) The quintessential option pricing formula under Lévy processes, 

Applied Mathematics Letters 22(10), 1626–1631. 
 
Albrecher, H., P. Mayer, W. Schoutens and J. Tistaert (2006) The Little Heston Trap, 

Working Paper, Linz and Graz University of Technology, K.U. Leuven, ING 
Financial Markets. 

 
Allen, R. L. and D. W. Mills (2004) Signal Analysis: Time, Frequency, Scale, and 

Structure, IEEE Press (Wiley–Interscience), New York. 
 



 

|   
 

77

Andersen, L. and J. Andreasen (2000) Jump-di7usion Processes: Volatility Smile 
Fitting and Numerical Methods for Pricing, Review of Derivatives Research 4, 
231–262. 

 
Andersen, L. and J. Andreasen (2002) Volatile Volatilities, Risk, December, 163–168. 
 
Andersen, L. and V. Piterbarg (2007) Moment explosions in stochastic volatility 

models, Finance and Stochastics 11, 29–50. 
 
Andreasen, J. (2006) Stochastic Volatility for Real, Working Paper, Bank of America. 
 
Andricopoulos, A., M. Widdicks, P. Duck and D. Newton (2003) Universal Option 

Valuation using Quadrature Methods, Journal of Financial Economics 67, 447–
471. 

 
Attari, M. (2004) Option Pricing using Fourier Transforms: A Numerically E%cient 

Simpli$cation, Working Paper, Charles River Associates. Available at SSRN: 
http://ssrn.com/abstract=520042 

 
Bailey, D. and P. Swarztrauber (1991) The fractional Fourier transform and 

applications, SIAM Review 33, 389–404. 
 
Bailey, D. and P. Swarztrauber (1994) A fast method for the numerical evaluation of 

continuous Fourier and Laplace transforms, SIAM Journal on Scientific 

Computing 15, 1105–1110. 
 

Bakshi, G. and D. Madan (2000) Spanning and derivative-security valuation, Journal 
of Financial Economics 55, 205–238. 

 
Barone-Adesi, G. and R. E. Whaley (1987) E%cient analytic approximation of 

american option values, Journal of Finance 42, 301–320. 
 
Bates, D. S. (1996) Jumps and Stochastic Volatility: Exchange Rate Processes Implicit 

in Deutsche Mark Options, Review of Financial Studies 9(1), 69–107. 
 
Bates, D. S. (2006) Maximum Likelihood Estimation of Latent A%ne Processes, 

Review of Financial Studies 19, 909–965. 
 
Benhamou, E. (2000) Fast Fourier Transform for Discrete Asian Options, EFMA 2001 

Lugano Meetings. Available at SSRN: http://ssrn.com/abstract=269491 
 

http://ssrn.com/abstract=520042
http://ssrn.com/abstract=269491


 

|   
 

78

Binkowski, K. (2007) Pricing of European Options using Empirical Characteristic 
Functions, Macquarie University, Sydney. 

 
Black, F. and M. S. Scholes (1973) The Pricing of Options and Corporate Liabilities, 

Journal of Political Economy 81, 637–654. 
 
Borak, S., K. Detlefsen and W. Härdle (2005) FFT Based Option Pricing, Discussion 

Paper, Sonderforschungsbereich (SFB) 649, Humboldt Universität Berlin. 
 
Borovkov, K. and A. Novikov (2002) On a new approach to calculating expectations 

for option pricing, Journal of Applied Probability 39, 889–895. 
 
Bouziane, M. (2008) Pricing Interest-Rate Derivatives – A Fourier-Transform Based 

Approach, Lecture Notes in Economics and Mathematical Systems 607, 
Springer, Berlin. 

 
Boyarchenko, S. I. and S. Z. Levendorskiĭ (2002) Non-Gaussian Merton-Black-Scholes 

Theory, World Scienti$c. 
 
Breeden, D. and R. Litzenberger (1978) Prices of state-contingent claims implicit in 

option prices, Journal of Business 51, 621–651. 
 
Cardi, G. (2005) Exotic Options under Lévy Processes, Ph.D. Dissertation, University 

of Bergamo. 
 
Carr, P. P. (2003) Option Pricing using Integral Transforms, Presentation. Available at 

http://www.math.nyu.edu/research/carrp/papers/pdf/integtransform.pdf 
 
Carr, P. P. and D. B. Madan (1999) Option valuation using the fast Fourier transform, 

Journal of Computational Finance 2(4), 61–73. 
 
Carr, P. P. and L. Wu (2003) The Finite Moment Log Stable Process and Option 

Pricing, Journal of Finance 58, 753–777. 
 
Carr, P. P. and L. Wu (2004) Time-changed Lévy processes and option pricing, Journal 

of Financial Economics 71, 113–141. 
 
Chourdakis, K. (2005) Option pricing using fractional FFT, Journal of Computational 

Finance 8(2), 1–18. 
 
Cont, R. (2001) Empirical properties of asset returns: stylized facts and statistical 

issues, Quantitative Finance 1, 223–236. 

http://www.math.nyu.edu/research/carrp/papers/pdf/integtransform.pdf


 

|   
 

79

Cont, R., J. da Fonseca and V. Durrleman (2002) Stochastic Models of Implied 
Volatility Surfaces, Economic Notes 31(2), 361–377. 

 
Cont, R. and P. Tankov (2004) Financial Modelling with Jump Processes (Financial 

Mathematics Series), Chapman & Hall/CRC, New York. 
 
Cooley, J. and J. Tukey (1965) An algorithm for the Machine Calculation of Complex 

Fourier Series, Mathematics of Computation 19, 297–301.  
 
Cox, J. C. and S. A. Ross (1976) The valuation of options for alternative stochastic 

processes. Journal of Financial Economics 3, 145–166. 
 
Davies, R. B. (1973) Numerical inversion of a characteristic function, Biometrika 

60(2), 415–417. 
 
Davis, P. J. and P. Rabinowitz (1984) Methods of Numerical Integration (Computer 

Science and Applied Mathematics), 2nd ed., Academic Press, NewYork. 
 
Delbaen, F. and W. Schachermayer (2006) The Mathematics of Arbitrage, Springer, 

Berlin. 
 
Dempster, M. A. and S. S. Hong (2002) Spread Option Valuation and the Fast Fourier 

Transform, Technical Report WP26/2000, University of Cambridge.  
 
Dobránszky, P. (2008) Numerical Quadratures to Calculate Lévy Base Correlation, 

Technical Report, Finalyse SA, FORTIS Merchant Banking and KU Leuven. 
 
Dobránszky, P. (2009) Option Pricing Using Numerically Evaluated Characteristic 

Functions, Presentation on the 3rd Conference on Numerical Methods in 
Finance, Paris. Available at 
http://peter.dobranszky.com/$les/NumericallyEvaluatedCFs.pdf 

 
Du%e, D., J. Pan and K. Singleton (2000) Transform analysis and asset pricing for 

a%ne jump–di7usions, Econometrica 68, 1343–1376. 
 
Du7y, D. G. (2004) Transform Methods for Solving Partial Di7erential Equations, 

2nd ed., Chapman & Hall/CRC, New York. 
 
Dufresne, D., J. Garrido and M. Morales (2009) Fourier Inversion Formulas in Option 

Pricing and Insurance, Methodology and Computing in Applied Probability 11, 
359–383. 

 

http://peter.dobranszky.com/files/NumericallyEvaluatedCFs.pdf


 

|   
 

80

Eberlein, E., K. Glau and A. Papapontoleon (2009) Analysis of Fourier Transform 
Valuation Formulas and Applications, to appear in Applied Mathematical 

Finance, arXiv:0809.3405v4 
 
Eberlein, E. and U. Keller (1995) Hyperbolic Distributions in Finance, Bernoulli 1(3), 

281–299. 
 
Epps, T. W. (1993) Characteristic Functions and Their Empirical Counterparts: 

Geometrical Interpretations and Applications to Statistical Inference, American 
Statistician 47, 33–38. 

 
Fahrner, I. (2007) Modern Logarithms for the Heston Model, International Journal of 

Theoretical and Applied Finance 10, 23–30. 
 
Fang, F. and C. Oosterlee (2008) A novel pricing method for European options based 

on Fourier-cosine series expansions, SIAM Journal on Scientific Computing 
31(2), 826–84. 

 

Fang, F., R. Lord and C. W. Oosterlee (2006) Fast and accurate Methods in Pricing 
Early Exercise Options under Lévy Processes, Working Paper, Rabobank 
International, Delft University of Technology and Center for Mathematics and 
Computer Science (CWI), Amsterdam. Available at http://mpra.ub.uni-
muenchen.de/1952/ 

 
Filipović, D. (2001) A General Characterization of one Factor A%ne Term Structure 

Models, Finance and Stochastics 5(3), 389–412. 
 
Fusai, G. and A. Roncoroni (2008) Implementing Models in Quantitative Finance: 

Methods and Cases (Springer Finance), Springer, Berlin. 
 
Gander, W. and W. Gautschi (2000) Adaptive Quadrature—Revisited, BIT 40(1), 

March, 84–101. 
 
Gatheral, J. (2006) The Volatility Surface: A Practitioner’s Guide (Wiley Finance 

Series), John Wiley & Sons, New York. 
 
Geman, H., N. El Karoui and J.-C. Rochet (1995) Changes of Numéraire, Changes of 

Probability Measure and Option Pricing, Journal of Applied Probability 32(2), 
443–458. 

 
Gil-Pelaez, J. (1951) Note on the inversion theorem, Biometrika 38(3–4), 481–482. 
 

http://arxiv.org/abs/0809.3405v4
http://mpra.ub.uni-muenchen.de/1952/
http://mpra.ub.uni-muenchen.de/1952/


 

|   
 

81

Guo, J. and M. Hung (2007) A Note on the Discontinuity Problem in Heston’s 
Stochastic Volatility Model, Applied Mathematical Finance 14, 339–345. 

 
Grundke, P. (2007) Computational aspects of integrated market and credit portfolio 

models, OR Spectrum 29, 259–294. 
 
Gurland, J. (1948) Inversion formulae for the distribution of ratios, Annals of 

Mathematical Statistics 19, 228–237. 
 
Hagan, P. S. and G. West (2006) Interpolation methods for curve construction, 

Applied Mathematical Finance 13(2), 89–129. 
 
Hart, J. F. & al. (1968) Computer Approximations (SIAM Series In Applied 

Mathematics), John Wiley & Sons, New York. Algorithm 5666 for the error 
function. 

 
Haug, E. (2003a) Know Your Weapon Part 1, Wilmott Magazine, May, 49–57. 
 
Haug, E. (2003b) Know Your Weapon Part 2, Wilmott Magazine, July, 50–56. 
 
Harrison, J. and D. Kreps (1979) Martingales and arbitrage in multiperiod securities 

markets, Journal of Economic Theory 20(3), 381–408. 
 
Harrison, M. and S. Pliska (1981) Martingales and stochastic integrals in the theory of 

continuous trading, Stochastic Processes Applications 11(3), 215–260. 
 
Heston, S. L. (1993) A Closed-form Solution for Options with Stochastic Volatility 

with Application to Bond and Currency Options, Review of Financial Studies 
6(2), 327–343. 

 
Heston, S. L. and S. Nandi (2000) A Closed-Form GARCH Option Pricing Model, 

Review of Financial Studies 13(3), 585–625. 
 
Huang, J. and L. Wu (2004) Speci$cation Analysis of Option Pricing Models Based on 

Time-Changed Lévy Processes, Journal of Finance 59, 1405–1440. 
 
Hughett, P. (1998) Error Bounds for Numerical Inversion of a Probability 

Characteristic Function, SIAM Journal on Numerical Analysis 35(4), 1368–
1392. 

 
Hurd, T. R. and Z. Zhou (2009) A Fourier transform method for spread option 

pricing, Preprint, arXiv:0902.3643v1 

http://arxiv.org/abs/0902.3643v1


 

|   
 

82

Itkin, A. (2005) Pricing options with VG model using FFT, arXiv:physics/0503137v1 
 
Jaschke, S. R. and Y. Jiang (2002) Approximating Value at Risk in Conditional 

Gaussian Models, In: Applied Quantitative Finance, Eds. W. Härdle, T. Kleinow 
and G. Stahl, Springer, Berlin. 

 
Ji, M. and F. Zapatero (2008) Empirical Performance of Lévy Option Pricing Models. 

Available at SSRN: http://ssrn.com/abstract=1266380 
 
Judd, K. L. (1998) Numerical Methods in Economics, The MIT Press, Cambridge. 
 
Kahl, C. and P. Jäckel (2006) Not-so-complex logarithms in the Heston model, 

Working Paper, University of Wuppertal and ABN AMRO. 
 
Keller-Ressel, M. (2008) A%ne Processes – Theory and Applications to Finance, 

Ph.D. Dissertation, Vienna University of Technology. 
 
Kilin, F. (2007) Accelerating the Calibration of Stochastic Volatility Models, Working 

Paper, Frankfurt School of Finance & Management and Quanteam AG. 
 
Kim, Y., S. Rachev, M. Bianchi and F. Fabozzi (2009) Computing VaR and AVaR in 

in$nitely divisible distributions, Technical Report, University of Karlsruhe. 
 
Kou, S. G. (2002) A jump-di7usion model for option pricing, Management Science 48, 

1086–1101. 
 
Kruse, S. and U. Nögel (2005) On the pricing of forward starting options in Heston’s 

model on stochastic volatility, Finance and Stochastics 9, 223–250. 
 
Lee, R. W. (2004) Option Pricing by Transform Methods: Extensions, Uni$cation, and 

Error Control, Journal of Computational Finance 7(3), 51–86. 
 
Leippold, M. and L. Wu (2002) Asset pricing under the Quadratic Class, Journal of 

Financial and Quantitative Analysis 37(2), 271–295. 
 
Lévy, P. (1925) Calcul des Probabilités, Gauthier-Villars et Cie, Paris. 
 
Lewis, A. (2000) Option Valuation under Stochastic Volatility: With Mathematica 

Code, Finance Press, Newport Beach. 
 

http://arxiv.org/abs/physics/0503137v1
http://ssrn.com/abstract=1266380


 

|   
 

83

Lewis, A. (2001) A Simple Option Formula for General Jump-Di7usion and other 
Exponential Lévy Processes, Envision Financial Systems and OptionCity.net, 
California. Available at http://optioncity.net/pubs/ExpLevy.pdf 

 
Lipton, A. (2001) Mathematical methods for foreign exchange, World Scienti$c. 
 
Lipton, A. (2002) The vol smile problem, Risk, February, 61–65. 
 
Lord, R. and C. Kahl (2007) Optimal Fourier Inversion in Semi-Analytical Option 

Pricing, Discussion Paper TI No. 2006–066/2, Tinbergen Institute. Available at 
SSRN: http://ssrn.com/abstract=921336 

 
Lord, R. and C. Kahl (2008) Complex logarithms in Heston-like models. Rabobank 

International and ABN AMRO, Available at SSRN: 
http://ssrn.com/abstract=1105998 

 
Lord, R., F. Fang, F. Bervoets and C. Oosterlee (2007) A Fast Method for Pricing 

Early-Exercise Options with the FFT, Lecture Notes In Computer Science 4488, 
415–422. 

 
Lukacs, E. (1970) Characteristic Functions, 2ed ed., Charles Gri%n & Co, London. 
 
Manno, V. P. (1988) A simple procedure for reducing numerical integration errors 

near singularities, Communications In Applied Numerical Methods 4, 713–716. 
 
Madan, D. B., P. P. Carr and E. C. Chang (1998) The Variance Gamma Process and 

Option Pricing, European Finance Review 2, 79–105. 
 
McCulloch, J. H. (2003) The Risk-Neutral Measure and Option Pricing under Log-

Stable Uncertainty, Working Paper, Ohio State University. 
 
McKeeman, W. M. (1962) Algorithm 145: Adaptive numerical integration by 

Simpson’s rule, Communications of the ACM 5(12), p 604. 
 
Meisel, W. (1968) A Numerical Integration Formula Useful in Fourier Analysis, 

Communications of the ACM 11, p 51. 
 
Menn, C. and S. T. Rachev (2006) Calibrated FFT-based density approximations for �-stable distributions, Computational Statistics & Data Analysis 50, 1891–1904. 
 
Merton, R. C. (1973) Theory of rational option pricing, Bell Journal of Economics and 

Management Science 4, 141–183. 

http://optioncity.net/pubs/ExpLevy.pdf
http://ssrn.com/abstract=921336
http://ssrn.com/abstract=1105998


 

|   
 

84

Merton, R. C. (1976) Option pricing when the underlying stock returns are 
discontinuous, Journal of Financial Economics 3, 125–144. 

 
Mikhailov, S. and U. Nögel (2003) Heston’s Stochastic Volatility Model – 

Implementation, Calibration and some Extensions, Wilmott Magazine, July, 74–
79. 

 
Minenna, M. and P. Verzella (2007) Fast Option Pricing using Non Uniform Discrete 

Fourier Transform on Gaussian Discretization Grids, CONSOB, University of 
Milano Bicocca. 

 
Minenna, M. and P. Verzella (2008) A revisited and stable Fourier transform method 

for a%ne jump di7usion models, Journal of Banking & Finance 32, 2064–2075. 
 
Nagel, H. (2001) Optionsbewertung bei stochastischer Volatilität, Deutscher 

Universitäts Verlag, Gabler, Wiesbaden. 
 
Nunes, J. P. and T. R. Alcaria (2009) Two Extensions to Forward Start Options 

Valuation, ISCTE Business School, Caixa Económica Montepio Geral. Available 
at SSRN: http://ssrn.com/abstract=1329370 

 
O’Sullivan, C. (2005) Path Dependent Option Pricing under Lévy Processes, EFA 

2005 Moscow Meetings Paper. Available at SSRN: 
http://ssrn.com/abstract=673424 

 
Pan, J. (2002) The jump-risk premia implicit in options: Evidence from an integrated 

time-series study, Journal of Financial Economics 63, 3–50. 
 
Raible, S. (2000) Lévy Processes in Finance: Theory, Numerics and Empirical Facts, 

Ph.D. Dissertation, University of Freiburg. 
 
Reiß, O. and U. Wystup (2001) E%cient Computation of Option Price Sensitivities 

using Homogeneity and other Tricks, Journal of Derivatives 9, 41–53. 
 
Ross, S. A. (1976) Options and E%ciency, The Quarterly Journal of Economics 90(1), 

75–89. 
 
Rudin, W. (1987) Real and Complex Analysis (International Series in Pure and 

Applied Mathematics), 3rd ed., McGraw-Hill, New York. 
 
Schöbel, R. and J. Zhu (1999) Stochastic Volatility with an Ornstein Uhlenbeck 

Process: An Extension, European Finance Review 3, 23–46. 

http://ssrn.com/abstract=1329370
http://ssrn.com/abstract=673424


 

|   
 

85

Schoutens, W. (2003) Lévy Processes in Finance: Pricing Financial Derivatives (Wiley 
Series in Probability and Statistics), John Wiley & Sons, Chichester. 

 
Sepp, A. (2003) Pricing European-Style Options under Jump Di7usion Processes with 

Stochastic Volatility: Applications of Fourier Transform, Working Paper, 
University of Tartu. 

 
Sepp, A. (2006) Extended CreditGrades Model with Stochastic Volatility and Jumps, 

Wilmott Magazine, September, 50–62. 
 
Staunton, M. (2006) Stochastic Volatility without Complex Numbers, Wilmott 

Magazine, May, 46–48. 
 
Stein, E. and J. Stein (1991) Stock Price Distributions with Stochastic Volatility: An 

Analytic Approach, Review of Financial Studies 4, 727–752. 
 
Tahani, N. (2004) Valuing Credit Derivatives Using Gaussian Quadrature: A 

Stochastic Volatility Framework, Journal of Futures Markets 24(1), 3–35. 
 
Tahani, N. and X. Li (2007) Pricing Interest Rate Derivatives under Stochastic 

Volatility, Working Paper, York University. 
 
Tankov, P. (2004) Lévy Processes in Finance: Inverse Problems and Dependence 

Modelling, Ph.D. Dissertation, École Polytechnique, Paris. 
 
Tankov, P. (2009) Calibration de Modèles et Couverture de Produits Dérivés, Lecture 

Notes, École Polytechnique et Université Paris VII, Edition 2009. Available at 
http://people.math.jussieu.fr/~tankov/MA/ 

 
Titchmarsh, E. C. (1975) Introduction to the Theory of Fourier Integrals, Reprint of 

2nd ed., Oxford University Press, London. 
 
Waller, L. A. (1995) Does the Characteristic Function Numerically Distinguish 

Distributions, The American Statistician 49(2), 150–152. 
 
Waller, L. A., B. W. Turnbull and J. M. Hardin (1995) Obtaining Distribution 

Functions by Numerical Inversion of Characteristic Functions with 
Applications, The American Statistician 49(4), 346–350. 

 
West, G. (2005) Better Approximations to Cumulative Normal Functions, Wilmott 

Magazine, May, 70–76. 
 

http://people.math.jussieu.fr/~tankov/MA/


 

|   
 

86

Wu, L. (2008) Modeling Financial Security Returns using Lévy Processes, In: 
Handbooks in Operations Research and Management Science: Financial 

Engineering, Volume 15, Eds. J. Birge and V. Linetsky, Elsevier, North-Holland. 
Available at http://faculty.baruch.cuny.edu/lwu/papers/handbooklevy.pdf 

 
Yan, G. and F. B. Hanson (2006) Option Pricing for a Stochastic-Volatility Jump-

Di7usion Model with Log-Uniform Jump-Amplitudes, Proceedings of the 2006 
American Control Conference, Minneapolis, Minnesota, June 14–16. 

 
Zeliade Systems (2009) Heston 2009, Zeliade Systems White Paper, September. 

Available at http://www.zeliade.com/whitepapers/zwp-0004.pdf 

http://faculty.baruch.cuny.edu/lwu/papers/handbooklevy.pdf
http://www.zeliade.com/whitepapers/zwp-0004.pdf
http://www.zeliade.com/whitepapers/zwp-0004.pdf

	1 Introduction
	2 Valuation Problem for European Options
	3 Fourier Transform, Inversion Theorem and Characteristic Functions
	3.1 Characteristic Functions
	3.2 The Inversion Theorem
	3.3 Elementary Properties of the Fourier Transform

	4 Pricing Formulae using Characteristic Functions
	4.1 The Black–Scholes Style Formula
	4.2 Attari’s Approach
	4.3 Bates’ Approach
	4.4 Carr and Madan Approach
	4.5 Lewis’ Approach
	4.6 Lipton’s approach
	4.7 Concluding Remarks and Recent Developments

	5 Applications of Inverse Fourier Methods to Distribution Functions and Option Pricing
	5.1 Numerical Evaluation of Inverse Fourier Integrals
	5.2 Examples of Characteristic Functions for Particular Price Dynamics
	5.3 Distribution Functions
	5.4 Option pricing
	5.5 Greeks and State Price Densities
	5.6 Concluding Remarks and Further Results from the Literature

	6 Numerical Issues and Possible Reﬁnements to the Inverse Fourier Methods
	6.1 Inversion of the Option minus the Black–Scholes Approximation
	6.2 Interpolation Issues
	6.3 Caching Technique
	6.4 Transforming the Domain of Integration
	6.5 Transforming the Fourier Integrands
	6.6 Log Spacing

	7 Conclusion
	References

